Skip to content
Snippets Groups Projects

Compare revisions

Changes are shown as if the source revision was being merged into the target revision. Learn more about comparing revisions.

Source

Select target project
No results found

Target

Select target project
No results found
Show changes
Showing
with 915 additions and 130 deletions
#pragma once
#include "ofMain.h"
#include "ofxMaxim.h"
#include "RapidBitalino.h"
#include "BITEnvironment.hpp"
class ofApp : public ofBaseApp{
public:
void setup ( void );
void update ( void );
void draw ( void );
void audioOut ( float * output, int bufferSize, int nChannels );
void exit ( void );
void keyPressed ( int key );
void keyReleased ( int key );
void updateMouse ( int x, int y, int8_t mouseButtonState );
void mouseMoved ( int x, int y );
void mouseDragged ( int x, int y, int button );
void mousePressed ( int x, int y, int button );
void mouseReleased ( int x, int y, int button );
void mouseEntered ( int x, int y );
void mouseExited ( int x, int y );
void windowResized ( int w, int h );
void dragEvent ( ofDragInfo dragInfo );
void gotMessage ( ofMessage msg );
private:
int8_t mouseButtonState = -1;
bool mouseButtonChanged = false;
//DEBUG
bool pr = false;
//---
BIT::Environment bitEnvironment;
int bufferSize;
int sampleRate;
};
File added
File added
File added
File added
File added
File added
File added
<group>
<0>100</0>
<1>0</1>
<2>44</2>
<3>0</3>
<4>100</4>
<5>0</5>
<6>45</6>
<7>0</7>
<8>100</8>
<9>0</9>
<10>45</10>
<11>0</11>
</group>
#include "ofMain.h"
#include "ofApp.h"
//========================================================================
int main( ){
ofSetupOpenGL(1024,768,OF_WINDOW); // <-------- setup the GL context
// this kicks off the running of my app
// can be OF_WINDOW or OF_FULLSCREEN
// pass in width and height too:
ofRunApp(new ofApp());
}
#include <array>
#include "ofApp.h"
//--------------------------------------------------------------
void ofApp::setup(){
myo.setup();
//gui
probsClear.addListener(this, &ofApp::probsClearPressed);
resetModel.addListener(this, &ofApp::resetModelPressed);
guiTong.setup("tong");
guiTong.add(tong0.setup("1", 50, 0, 100));
guiTong.add(tong1.setup("2", 0, 0, 100));
guiTong.add(tong2.setup("3", 90, 0, 100));
guiTong.add(tong3.setup("4", 0, 0, 100));
guiTong.add(tong4.setup("5", 90, 0, 100));
guiTong.add(tong5.setup("6", 0, 0, 100));
guiTong.add(tong6.setup("7", 0, 0, 100));
guiTong.add(tong7.setup("8", 60, 0, 100));
guiTong.add(tong8.setup("9", 0, 0, 100));
guiTong.add(tong9.setup("10", 90, 0, 100));
guiTong.add(tong10.setup("11", 0, 0, 100));
guiTong.add(tong11.setup("12", 0, 0, 100));
ofColor green(0, 255, 0);
guiTong.setHeaderBackgroundColor(green);
guiThung.setup("thung", "thung", 250, 10);
guiThung.add(thung0.setup("1", 100, 0, 100));
guiThung.add(thung1.setup("2", 0, 0, 100));
guiThung.add(thung2.setup("3", 10, 0, 100));
guiThung.add(thung3.setup("4", 0, 0, 100));
guiThung.add(thung4.setup("5", 60, 0, 100));
guiThung.add(thung5.setup("6", 0, 0, 100));
guiThung.add(thung6.setup("7", 10, 0, 100));
guiThung.add(thung7.setup("8", 0, 0, 100));
guiThung.add(thung8.setup("9", 60, 0, 100));
guiThung.add(thung9.setup("10", 0, 0, 100));
guiThung.add(thung10.setup("11", 30, 0, 100));
guiThung.add(thung11.setup("12", 0, 0, 100));
ofColor yellow(255, 255, 0);
guiThung.setHeaderBackgroundColor(yellow);
guiGeneral.setup("general", "general", 500, 10);
guiGeneral.add(gain.setup("gain", 1., 0., 1.));
guiGeneral.add(modelControl.setup("run model", false));
guiGeneral.add(resetModel.setup("reset model"));
guiGeneral.add(inputDevice.setup("myo", false));
guiGeneral.add(probsClear.setup("clear"));
//This will make life easier later
allSliders.push_back(tong0);
allSliders.push_back(tong1);
allSliders.push_back(tong2);
allSliders.push_back(tong3);
allSliders.push_back(tong4);
allSliders.push_back(tong5);
allSliders.push_back(tong6);
allSliders.push_back(tong7);
allSliders.push_back(tong8);
allSliders.push_back(tong9);
allSliders.push_back(tong10);
allSliders.push_back(tong11);
allSliders.push_back(thung0);
allSliders.push_back(thung1);
allSliders.push_back(thung2);
allSliders.push_back(thung3);
allSliders.push_back(thung4);
allSliders.push_back(thung5);
allSliders.push_back(thung6);
allSliders.push_back(thung7);
allSliders.push_back(thung8);
allSliders.push_back(thung9);
allSliders.push_back(thung10);
allSliders.push_back(thung11);
//RapidLib
trained = false;
//loading samples
saron_sbpl1.load(ofToDataPath("saron-sbpl1.wav"));
saron_sbpl2.load(ofToDataPath("saron-sbpl2.wav"));
saron_sbpl3.load(ofToDataPath("saron-sbpl3.wav"));
saron_sbpl4.load(ofToDataPath("saron-sbpl4.wav"));
saron_sbpl5.load(ofToDataPath("saron-sbpl5.wav"));
ciblon_tong.load(ofToDataPath("drums-ciblon-medium-tong.wav"));
ciblon_thung.load(ofToDataPath("drums-ciblon-medium-thung.wav"));
//maxi Clock
myClock.setTicksPerBeat(4);//This sets the number of ticks per beat
myClock.setTempo(120);// This sets the tempo in Beats Per Minute
//audio setup
sampleRate = 44100;
bufferSize = 512;
ofxMaxiSettings::setup(sampleRate, 2, initialBufferSize);
ofSoundStreamSetup(2,2,this, sampleRate, bufferSize, 4);
}
//--------------------------------------------------------------
void ofApp::update(){
if (inputDevice) { //Only when Myo is toggled on
//Simple gain control
float emg = myo.getDevices()[0]->getEmgSamples()[4];
streamBuf.pushToWindow(double(emg));
gain = streamBuf.rms() * 0.01;
//Machine learning with quarternions
double myoX = myo.getDevices()[0]->getQuaternion().x();
double myoY = myo.getDevices()[0]->getQuaternion().y();
double myoZ = myo.getDevices()[0]->getQuaternion().z();
double myoW = myo.getDevices()[0]->getQuaternion().w();
if (inputDevice) {
if (recordingState > 0) {
trainingExample tempExample;
tempExample.input = { myoX, myoY, myoZ, myoW };
for (int i = 0; i < allSliders.size() ; ++i) {
tempExample.output.push_back(double(allSliders[i]));
}
trainingSet.push_back(tempExample);
} else if (trained && modelControl == 1) {
std::vector<double> inputVec;
inputVec.push_back(myoX);
inputVec.push_back(myoY);
inputVec.push_back(myoZ);
inputVec.push_back(myoW);
std::vector<double> output = myNN.run(inputVec);
for (int i = 0; i < output.size(); ++i) {
allSliders[i] = int(output[i]);
}
}
}
}
}
//--------------------------------------------------------------
void ofApp::exit(){
myo.stop();
}
//--------------------------------------------------------------
void ofApp::draw(){
//ofClear(0);
ofDrawBitmapString(currentBeat, 100, 300);
ofDrawBitmapString("Hold space to record", 200, 300);
guiTong.draw();
guiThung.draw();
guiGeneral.draw();
if (inputDevice) {
ofSetColor(255);
for ( int i=0; i<myo.getDevices().size(); i++ ) {
stringstream s;
s << "id: " << myo.getDevices()[i]->getId() << endl;
s << "which: " << myo.getDevices()[i]->getWhichArm() << endl;
s << "pose: " << myo.getDevices()[i]->getPose() << endl;
s << "accel: ";
s << myo.getDevices()[i]->getAccel().x << ",";
s << myo.getDevices()[i]->getAccel().y << ",";
s << myo.getDevices()[i]->getAccel().z << endl;
s << "gyro: ";
s << myo.getDevices()[i]->getGyro().x << ",";
s << myo.getDevices()[i]->getGyro().y << ",";
s << myo.getDevices()[i]->getGyro().z << endl;
s << "quaternion: ";
s << myo.getDevices()[i]->getQuaternion().x() << ",";
s << myo.getDevices()[i]->getQuaternion().y() << ",";
s << myo.getDevices()[i]->getQuaternion().z() << ",";
s << myo.getDevices()[i]->getQuaternion().w() << endl;
s << "roll/pitch/yaw: ";
s << myo.getDevices()[i]->getRoll() << ",";
s << myo.getDevices()[i]->getPitch() << ",";
s << myo.getDevices()[i]->getYaw() << endl;
s << "raw data: ";
for ( int j=0; j<8; j++ ) {
s << myo.getDevices()[i]->getEmgSamples()[j];
s << ",";
}
s << endl;
ofSetColor(0);
ofDrawBitmapString(s.str(), 10, 400 + i*100);
}
}
}
//--------------------------------------------------------------
void ofApp::probsClearPressed() {
std::cout << "clearing probs" << std::endl;
for (int i = 0; i < allSliders.size(); ++i) {
allSliders[i] = 0;
}
}
//--------------------------------------------------------------
void ofApp::resetModelPressed() {
std::cout << "resetting models" << std::endl;
myNN.reset();
trainingSet.clear();
modelControl = false;
}
//--------------------------------------------------------------
bool eventTest(int prob) {
int testRand = rand() % 100;
if (testRand < prob) {
return true;
}
return false;
}
//--------------------------------------------------------------
void ofApp::audioOut(float * output, int bufferSize, int nChannels) {
//probs = { tong0, tong1, tong2, tong3, tong4, tong5, tong6, tong7, tong8, tong9, tong10, tong11 };
//probs2 = { thung0, thung1, thung2, thung3, thung4, thung5, thung6, thung7, thung8, thung9, thung10, thung11 };
bool beatsTong[12];
bool beats2[12];
for (int i = 0; i < 12; ++i) {
beatsTong[i] = eventTest(allSliders[i]);
beats2[i] = eventTest(allSliders[i + 12]);
}
int lastCount = 0;
int testMe = 0;
for (int i = 0; i < bufferSize; i++){
myClock.ticker();
if (myClock.tick) {
if (beatsTong[currentBeat]) {
ciblon_tong.trigger();
}
if (beats2[currentBeat]) {
ciblon_thung.trigger();
}
currentBeat = (currentBeat + 1) % 12;
}
outputs[0] = ciblon_tong.playOnce() * gain;
outputs[1] = ciblon_thung.playOnce() * gain;
output[i*nChannels ] = outputs[0];
output[i*nChannels + 1] = outputs[1];
}
}
//--------------------------------------------------------------
void ofApp::keyPressed(int key){
//std::cout << "key: " << key << std::endl;
switch(key) {
case 32:
recordingState = 1;
break;
case 13:
modelControl = (modelControl) ? false : true;
break;
}
}
//--------------------------------------------------------------
void ofApp::keyReleased(int key){
recordingState = 0;
if (trainingSet.size() > 0) {
trained = myNN.train(trainingSet);
std::cout << "trained: " << trained << std::endl;
}
}
//--------------------------------------------------------------
void ofApp::mouseMoved(int x, int y ){
if (inputDevice == false) { //don't do this with Myo is on
if (recordingState > 0) {
trainingExample tempExample;
tempExample.input = { double(x), double(y) };
for (int i = 0; i < allSliders.size() ; ++i) {
tempExample.output.push_back(double(allSliders[i]));
}
trainingSet.push_back(tempExample);
} else if (trained && modelControl == 1) {
std::vector<double> inputVec;
inputVec.push_back(double(x));
inputVec.push_back(double(y));
std::vector<double> output = myNN.run(inputVec);
for (int i = 0; i < output.size(); ++i) {
allSliders[i] = int(output[i]);
}
}
}
}
//--------------------------------------------------------------
void ofApp::mouseDragged(int x, int y, int button){
}
//--------------------------------------------------------------
void ofApp::mousePressed(int x, int y, int button){
}
//--------------------------------------------------------------
void ofApp::mouseReleased(int x, int y, int button){
}
//--------------------------------------------------------------
void ofApp::mouseEntered(int x, int y){
}
//--------------------------------------------------------------
void ofApp::mouseExited(int x, int y){
}
//--------------------------------------------------------------
void ofApp::windowResized(int w, int h){
}
//--------------------------------------------------------------
void ofApp::gotMessage(ofMessage msg){
}
//--------------------------------------------------------------
void ofApp::dragEvent(ofDragInfo dragInfo){
}
#pragma once
#include <vector>
#include "ofMain.h"
#include "ofxGui.h"
#include "ofxMyo.h"
#include "ofxMaxim.h"
#include "regression.h"
#include "rapidStream.h"
class ofApp : public ofBaseApp{
public:
void setup();
void update();
void draw();
void exit();
void keyPressed(int key);
void keyReleased(int key);
void mouseMoved(int x, int y );
void mouseDragged(int x, int y, int button);
void mousePressed(int x, int y, int button);
void mouseReleased(int x, int y, int button);
void mouseEntered(int x, int y);
void mouseExited(int x, int y);
void windowResized(int w, int h);
void dragEvent(ofDragInfo dragInfo);
void gotMessage(ofMessage msg);
void probsClearPressed();
void resetModelPressed();
ofxIntSlider thung0, thung1, thung2, thung3;
ofxIntSlider thung4, thung5, thung6, thung7;
ofxIntSlider thung8, thung9, thung10, thung11;
std::vector<ofxIntSlider> thungs;
ofxPanel guiThung;
ofxIntSlider tong0, tong1, tong2, tong3;
ofxIntSlider tong4, tong5, tong6, tong7;
ofxIntSlider tong8, tong9, tong10, tong11;
ofxPanel guiTong;
ofxFloatSlider gain;
ofxToggle inputDevice;
ofxToggle modelControl;
ofxButton resetModel;
ofxButton probsClear;
ofxPanel guiGeneral;
std::vector<ofxIntSlider> allSliders;
//Maxi
void audioOut(float * output, int bufferSize, int nChannels);
//void audioIn(float * input, int bufferSize, int nChannels);
int bufferSize;
int initialBufferSize;
int sampleRate;
private:
ofxMyo::Myo myo;
//---------Maxi---------------//
double outputs[2];
maxiSample saron_sbpl1;
maxiSample saron_sbpl2;
maxiSample saron_sbpl3;
maxiSample saron_sbpl4;
maxiSample saron_sbpl5;
maxiSample ciblon_tong;
maxiSample ciblon_thung;
maxiClock myClock;
int currentBeat;
//---------RapidLib---------------//
regression myNN;
std::vector<trainingExample> trainingSet;
int recordingState;
bool trained;
rapidStream streamBuf = rapidStream(25);
};
#!/bin/bash
#Make sure we've got the latest version
git pull
git submodule update --init --recursive
rm -rf build/
mkdir build
cd build
cmake ..
make
./rapidmixTest
cp ./helloRapidMix ../examples/HelloRapidMix/helloRapidMix
\ No newline at end of file
/*
* machineLearning.cpp
* Created by Michael Zbyszynski on 10 Jan 2016
/**
* @file machineLearning.cpp
* @author Michael Zbyszynski
* @date 10 Jan 2016
* @copyright
* Copyright © 2017 Goldsmiths. All rights reserved.
*/
#include "machineLearning.h"
RAPIDMIX_BEGIN_NAMESPACE
void trainingData2rapidLib (const trainingData &newTrainingData, std::vector<trainingExample> &trainingSet) {
for (int h = 0; h < newTrainingData.trainingSet.size(); ++h) { //Go through every phrase
for (int i = 0; i < newTrainingData.trainingSet[h].elements.size(); ++i) { //...and every element
trainingExample tempExample;
tempExample.input = newTrainingData.trainingSet[h].elements[i].input;
if (newTrainingData.trainingSet[h].elements[i].output.size() > 0) {
tempExample.output = newTrainingData.trainingSet[h].elements[i].output;
} else {
std::unordered_map<std::string, int>::const_iterator mappedLabel = newTrainingData.labels.find(newTrainingData.trainingSet[h].label);
tempExample.output.push_back(double(mappedLabel->second));
namespace rapidmix {
//////////////////////////////////////////////////////////////////////// Generic train
template <class MachineLearningModule>
bool machineLearning<MachineLearningModule>::train(const trainingData &newTrainingData) {
return MachineLearningModule::train(newTrainingData);
}
/////////////////////////////////////////////////////////////////////// RapidLib specializations
void trainingData2rapidLib (const trainingData &newTrainingData, std::vector<trainingExample> &trainingSet) {
for (int h = 0; h < newTrainingData.trainingSet.size(); ++h) { //Go through every phrase
for (int i = 0; i < newTrainingData.trainingSet[h].elements.size(); ++i) { //...and every element
trainingExample tempExample;
tempExample.input = newTrainingData.trainingSet[h].elements[i].input;
if (newTrainingData.trainingSet[h].elements[i].output.size() > 0) {
tempExample.output = newTrainingData.trainingSet[h].elements[i].output;
} else {
tempExample.output.push_back(double(h));
}
trainingSet.push_back(tempExample);
}
trainingSet.push_back(tempExample);
}
};
/////////////////////////////////////////////////////////////////////// RapidLib classification
template<>
bool machineLearning<classification>::train(const trainingData &newTrainingData) {
std::vector<trainingExample> trainingSet;
labels.clear();
for (int i = 0; i < newTrainingData.trainingSet.size(); ++i) {
labels.push_back(newTrainingData.trainingSet[i].label);
}
trainingData2rapidLib(newTrainingData, trainingSet);
return classification::train(trainingSet);
}
template<>
std::string machineLearning<classification>::run(const std::vector<double> &inputVector, const std::string &label) {
int classIndex = classification::run(inputVector)[0];
return labels[classIndex];
};
/////////////////////////////////////////////////////////////////////// RapidLib regression
template<>
bool machineLearning<regression>::train(const trainingData &newTrainingData) {
std::vector<trainingExample> trainingSet;
trainingData2rapidLib(newTrainingData, trainingSet);
return regression::train(trainingSet);
}
/////////////////////////////////////////////////////////////////////// RapidLib seriesClassification
template<>
bool machineLearning<seriesClassification>::train(const trainingData &newTrainingData) {
std::vector<trainingSeries> seriesSet;
for (int i = 0; i < newTrainingData.trainingSet.size(); ++i) { //each phrase
trainingSeries tempSeries;
tempSeries.label = newTrainingData.trainingSet[i].label;
for (int j = 0; j < newTrainingData.trainingSet[i].elements.size(); ++j) { //each element
tempSeries.input.push_back(newTrainingData.trainingSet[i].elements[j].input);
}
seriesSet.push_back(tempSeries);
}
return seriesClassification::train(seriesSet);
}
template<>
std::string machineLearning<seriesClassification>::run(const std::vector<std::vector<double> > &inputSeries) {
return seriesClassification::run(inputSeries);
}
/////////////////////////////////////////////////////////////////////// GVF
template<>
bool machineLearning<rapidGVF>::train(const trainingData &newTrainingData) {
return rapidGVF::train(newTrainingData);
}
};
template<>
bool machineLearning<classification>::train(const trainingData &newTrainingData) {
std::vector<trainingExample> trainingSet;
trainingData2rapidLib(newTrainingData, trainingSet);
return classification::train(trainingSet);
}
template<>
bool machineLearning<regression>::train(const trainingData &newTrainingData) {
std::vector<trainingExample> trainingSet;
trainingData2rapidLib(newTrainingData, trainingSet);
return regression::train(trainingSet);
}
RAPIDMIX_END_NAMESPACE
/*
* machineLearning.h
* Created by Michael Zbyszynski on 10 Jan 2016
/**
* @file machineLearning.h
* @author Michael Zbyszynski on 10 Jan 2016
* @copyright
* Copyright © 2017 Goldsmiths. All rights reserved.
*
* @ingroup machinelearning
*/
#ifndef machineLearning_h
#define machineLearning_h
#include "rapidMix.h"
#include "trainingData.h"
#include <vector>
#include "../rapidmix.h"
////////// Include all of the machine learning algorithms here
#include "classification.h"
#include "regression.h"
#include "rapidXmmTools.h"
//#include "gvf.h"
#include "seriesClassification.h"
#include "./rapidXMM/rapidXMM.h"
#include "./rapidGVF/rapidGVF.h"
// forward declaration
namespace rapidmix { class trainingData; }
RAPIDMIX_BEGIN_NAMESPACE
//* Host class for machine learning algorithms */
template <typename MachineLearningModule>
class machineLearning : public MachineLearningModule {
public:
namespace rapidmix {
//* Constructors */
machineLearning() : MachineLearningModule() {};
// forward declaration
class trainingData;
template<class T>
machineLearning(T type) : MachineLearningModule(type) {};
/** @brief A generic ouptut struct to fit all kinds of models */
typedef struct runResults_t {
std::vector<double> likelihoods;
std::vector<double> regression;
std::vector<double> progressions;
std::string likeliest;
} runResults;
//* this function becomes specialized in the implementation */
bool train(const trainingData &newTrainingData);
/**
* @brief Host class for machine learning algorithms
*/
template <typename MachineLearningModule>
class machineLearning : public MachineLearningModule {
public:
//* Constructors */
machineLearning() : MachineLearningModule() {};
template<class T>
machineLearning(T type) : MachineLearningModule(type) {};
/**
* @brief This function becomes specialized in the implementation
*/
bool train(const trainingData &newTrainingData);
//* this function is not being specialized
std::vector<double> run(const std::vector<double> &inputVector) {
return MachineLearningModule::run(inputVector);
}
// This is a hack while I think about how to do this. -MZ //
std::string run(const std::vector<double> &inputVector, const std::string &label);
//* This is the one I'm using for DTW */
std::string run(const std::vector<std::vector<double> > &inputSeries);
bool reset() {
return MachineLearningModule::reset();
}
private:
MachineLearningModule module;
//this holds string labels
std::vector<std::string> labels; //FIXME: This probably should be pushed down into rapidLib?
std::string getLabel(int value);
};
// Could overload this, or specialize, or both
std::vector<double> run(const std::vector<double> &inputVector) {
return MachineLearningModule::process(inputVector);
}
////////// typedefs for calling different algorithms
bool reset() {
return MachineLearningModule::reset();
}
///// RapidLib
private:
MachineLearningModule module;
};
////////// typedefs for calling different algorithms
typedef machineLearning<classification> staticClassification;
typedef machineLearning<regression> staticRegression;
typedef xmmToolConfig xmmConfig;
typedef machineLearning<xmmGmmTool> xmmStaticClassification;
typedef machineLearning<xmmGmrTool> xmmStaticRegression;
typedef machineLearning<xmmHmmTool> xmmTemporalClassification;
typedef machineLearning<xmmHmrTool> xmmTemporalRegression;
//*/
/*
typedef machineLearning<GVF> gvf;
//*/
RAPIDMIX_END_NAMESPACE
/** @brief static classification using KNN from RapidLib */
typedef machineLearning<classification> staticClassification;
/** @brief static regression using Neural Networks from RapidLib */
typedef machineLearning<regression> staticRegression;
/** @brief temporal classification using Dynamic Time Warping from RapidLib */
typedef machineLearning<seriesClassification> dtwTemporalClassification;
///// XMM
/** @brief configuration for XMM based algorithms */
typedef xmmToolConfig xmmConfig;
/** @brief static classification using Gaussian Mixture Models from XMM */
typedef machineLearning<rapidXmmGmm> xmmStaticClassification;
/** @brief static regression using Gaussian Mixture Models from XMM */
typedef machineLearning<rapidXmmGmr> xmmStaticRegression;
/** @brief temporal classification using Hierarchical Hidden Markov Models from XMM */
typedef machineLearning<rapidXmmHmm> xmmTemporalClassification;
/** @brief temporal regression using Hierarchical Hidden Markov Models from XMM */
typedef machineLearning<rapidXmmHmr> xmmTemporalRegression;
///// GVF
/** @brief temporal variation estimation using GVF library */
typedef machineLearning<rapidGVF> gvfTemporalVariation;
}
#endif
//
// rapidGVF.cpp
//
// Created by Francisco on 04/05/2017.
// Copyright © 2017 Goldsmiths. All rights reserved.
//
#include "rapidGVF.h"
#include "../trainingData.h"
rapidGVF::rapidGVF() {}
rapidGVF::~rapidGVF() {}
bool rapidGVF::train(const rapidmix::trainingData &newTrainingData)
{
if (newTrainingData.trainingSet.size() < 1)
{
// no recorded phrase
return false;
}
if (newTrainingData.trainingSet.size() == 1 && newTrainingData.trainingSet[0].elements.size() == 0) {
// empty recorded phrase
return false;
}
if(gvf.getState() != GVF::STATE_LEARNING)
{
gvf.setState(GVF::STATE_LEARNING);
}
//Go through every phrase
for (int h = 0; h < newTrainingData.trainingSet.size(); ++h)
{
gvf.startGesture();
for (int i = 0; i < newTrainingData.trainingSet[h].elements.size(); ++i)
{
std::vector<double> vd = newTrainingData.trainingSet[h].elements[i].input;
// Using template <class InputIterator> vector to change for vec<double> to vec<float>
std::vector<float> vf(vd.begin(), vd.end());
this->currentGesture.addObservation(vf);
}
gvf.addGestureTemplate(this->currentGesture);
}
return true;
}
std::vector<double> rapidGVF::run(const std::vector<double> &inputVector)
{
if (inputVector.size() == 0)
{
return std::vector<double>();
}
gvf.restart();
if (gvf.getState() != GVF::STATE_FOLLOWING)
{
gvf.setState(GVF::STATE_FOLLOWING);
}
// Using template <class InputIterator> vector to change for vec<double> to vec<float>
std::vector<float> vf(inputVector.begin(),inputVector.end());
this->currentGesture.addObservation(vf);
outcomes = gvf.update(this->currentGesture.getLastObservation());
std::vector<double> output;
output.push_back(outcomes.likeliestGesture);
output.insert(output.end(), outcomes.likelihoods.begin(), outcomes.likelihoods.end());
output.insert(output.end(), outcomes.alignments.begin(), outcomes.alignments.end());
return output;
}
const std::vector<float> rapidGVF::getLikelihoods()
{
return outcomes.likelihoods;
};
const std::vector<float> rapidGVF::getAlignments()
{
return outcomes.alignments;
};
const std::vector<std::vector<float> > * rapidGVF::getDynamics()
{
return &outcomes.dynamics;
};
const std::vector<std::vector<float> > * rapidGVF::getScalings()
{
return &outcomes.scalings;
};
const std::vector<std::vector<float> > * rapidGVF::getRotations()
{
return &outcomes.rotations;
};
/**
* @file rapidGVF.h
* Created by Francisco on 04/05/2017.
* Copyright © 2017 Goldsmiths. All rights reserved.
*
* @ingroup machinelearning
*/
#ifndef rapidGVF_h
#define rapidGVF_h
#include <vector>
#include <string>
#include "GVF.h"
namespace rapidmix { class trainingData; }
/**
* @brief This class is an adapter for the GVF library from Baptiste Caramiaux
*/
class rapidGVF {
public:
rapidGVF();
~rapidGVF();
bool train(const rapidmix::trainingData &newTrainingData);
std::vector<double> run(const std::vector<double> &inputVector);
//TODO: needs a "reset" message
const std::vector<float> getLikelihoods();
const std::vector<float> getAlignments();
const std::vector<std::vector<float> > * getDynamics();
const std::vector<std::vector<float> > * getScalings();
const std::vector<std::vector<float> > * getRotations();
private:
GVF gvf;
GVFGesture currentGesture;
GVFOutcomes outcomes;
};
#endif
#include "rapidXmmTools.h"
#include "trainingData.h"
#include "machineLearning.h"
#include "rapidXMM.h"
#include "../trainingData.h"
#include "../machineLearning.h"
static bool trainingData2xmmTrainingSet(const rapidmix::trainingData& data, xmm::TrainingSet& set) {
if (data.trainingSet.size() <= 1) {
// no recorded phrase (only default one)
if (data.trainingSet.size() < 1) {
return false;
}
if (data.trainingSet.size() > 1 && data.trainingSet[1].elements.size() == 0) {
if (data.trainingSet.size() > 0 && data.trainingSet[0].elements.size() == 0) {
// empty recorded phrase
return false;
}
rapidmix::trainingData::element el = data.trainingSet[1].elements[0];
rapidmix::trainingData::element el = data.trainingSet[0].elements[0];
int dimIn = static_cast<int>(el.input.size());
int dimOut = static_cast<int>(el.output.size());
......@@ -43,9 +42,7 @@ static bool trainingData2xmmTrainingSet(const rapidmix::trainingData& data, xmm:
set.clear();
//for (auto &phrase : data.trainingSet) {
// changed to look starting from index 1
// because phrase at index 0 is for unordered elements
for (int i = 1; i < data.trainingSet.size(); ++i) {
for (int i = 0; i < data.trainingSet.size(); ++i) {
const rapidmix::trainingData::phrase &phrase = data.trainingSet[i];
xp.clear();
xp.label.set(phrase.label);
......@@ -84,25 +81,27 @@ bool xmmTool<SingleClassModel, Model>::train(const rapidmix::trainingData& newTr
template <class SingleClassModel, class Model>
Json::Value xmmTool<SingleClassModel, Model>::toJSON(/*std::string modelType*/) {
Json::Value root;
Json::Value metadata;
Json::Value modelSet;
metadata["creator"] = "Rapid API C++";
metadata["version"] = "v0.1.1"; //TODO: This should be a macro someplace
metadata["family"] = "xmm";
root["metadata"] = metadata;
root["docType"] = "rapid-mix:ml-model";
root["docVersion"] = RAPIDMIX_JSON_DOC_VERSION;
modelSet.append(model.toJson());
root["modelSet"] = modelSet;
Json::Value target;
target["name"] = "xmm";
target["version"] = "v1.0.0";
root["target"] = target;
root["payload"] = model.toJson();
return root;
}
template <class SingleClassModel, class Model>
bool xmmTool<SingleClassModel, Model>::fromJSON(Json::Value &jm) {
if (jm["metadata"]["family"].asString().compare("xmm") == 0 &&
jm["modelSet"].size() > 0) {
model.fromJson(jm["modelSet"][0]);
if (jm["docType"].asString().compare("rapid-mix:ml-model") == 0 &&
jm["target"]["name"].asString().compare("xmm") == 0 &&
jm["payload"].size() > 0) {
model.fromJson(jm["payload"]);
model.reset();
return true;
}
......@@ -146,14 +145,14 @@ bool xmmTool<SingleClassModel, Model>::readJSON(const std::string &filepath) {
//============================== xmmGmmTool ==================================//
std::vector<double> xmmGmmTool::process(const std::vector<double>& inputVector) {
std::vector<double> rapidXmmGmm::run(const std::vector<double>& inputVector) {
xmmTool::preProcess(inputVector);
return model.results.smoothed_normalized_likelihoods;
}
//============================== xmmGmrTool ==================================//
std::vector<double> xmmGmrTool::process(const std::vector<double>& inputVector) {
std::vector<double> rapidXmmGmr::run(const std::vector<double>& inputVector) {
xmmTool::preProcess(inputVector);
std::vector<float> *res = &model.results.output_values;
std::vector<double> dRes(res->begin(), res->end());
......@@ -162,7 +161,7 @@ std::vector<double> xmmGmrTool::process(const std::vector<double>& inputVector)
//============================== xmmHmmTool ==================================//
std::vector<double> xmmHmmTool::process(const std::vector<double>& inputVector) {
std::vector<double> rapidXmmHmm::run(const std::vector<double>& inputVector) {
xmmTool::preProcess(inputVector);
std::vector<double> res;
......@@ -178,7 +177,7 @@ std::vector<double> xmmHmmTool::process(const std::vector<double>& inputVector)
//============================== xmmHmrTool ==================================//
std::vector<double> xmmHmrTool::process(const std::vector<double>& inputVector) {
std::vector<double> rapidXmmHmr::run(const std::vector<double>& inputVector) {
xmmTool::preProcess(inputVector);
std::vector<float> *res = &model.results.output_values;
std::vector<double> dRes(res->begin(), res->end());
......@@ -186,16 +185,27 @@ std::vector<double> xmmHmrTool::process(const std::vector<double>& inputVector)
}
///////////////////////////////////////////////////////////////////////////
///// generic train method and forward declaration of specialized templates
///// generic train method and forward declaration of specialized templates
///////////////////////////////////////////////////////////////////////////
template class xmmTool<xmm::GMM, xmm::GMM>;
template class xmmTool<xmm::HMM, xmm::HierarchicalHMM>;
template class xmmStaticTool<xmm::GMM, xmm::GMM>;
template class xmmTemporalTool<xmm::HMM, xmm::HierarchicalHMM>;
//I wonder why this can't be defined in machineLearning.cpp? -MZ
// It is needed by the template instantiations below.
// You get an undefined symbols error otherwise.
template <class MachineLearningModule>
bool rapidmix::machineLearning<MachineLearningModule>::train(const trainingData &newTrainingData) {
return MachineLearningModule::train(newTrainingData);
}
template class rapidmix::machineLearning<xmmGmmTool>;
template class rapidmix::machineLearning<xmmGmrTool>;
template class rapidmix::machineLearning<xmmHmmTool>;
template class rapidmix::machineLearning<xmmHmrTool>;
template class rapidmix::machineLearning<rapidXmmGmm>;
template class rapidmix::machineLearning<rapidXmmGmr>;
template class rapidmix::machineLearning<rapidXmmHmm>;
template class rapidmix::machineLearning<rapidXmmHmr>;
/**
* @file rapidXMM.h
* @author joseph larralde
*
* @copyright
* Copyright (C) 2016 - 2017 by IRCAM - Centre Pompidou, Paris, France.
* All rights reserved.
*
* @ingroup machinelearning
*/
#ifndef _RAPID_XMM_TOOLS_H_
#define _RAPID_XMM_TOOLS_H_
......@@ -129,7 +140,7 @@ protected:
mCfg.gaussians.set(cfg.gaussians);
mCfg.relative_regularization.set(cfg.relativeRegularization);
mCfg.absolute_regularization.set(cfg.absoluteRegularization);
xmm::MultiClassRegressionEstimator mcre;
switch (cfg.regressionEstimator) {
case xmmLikeliestRegression:
......@@ -210,40 +221,52 @@ public:
//================== actual classes used in machineLearning.h ================//
class xmmGmmTool : public xmmStaticTool<xmm::GMM, xmm::GMM> {
/**
* @brief Static classification using Gaussian Mixture Models
*/
class rapidXmmGmm : public xmmStaticTool<xmm::GMM, xmm::GMM> {
public:
xmmGmmTool(xmmToolConfig cfg = xmmToolConfig()) :
rapidXmmGmm(xmmToolConfig cfg = xmmToolConfig()) :
xmmStaticTool<xmm::GMM, xmm::GMM>(cfg, false) {}
~xmmGmmTool() {}
~rapidXmmGmm() {}
std::vector<double> process(const std::vector<double>& inputVector);
std::vector<double> run(const std::vector<double>& inputVector);
};
class xmmGmrTool : public xmmStaticTool<xmm::GMM, xmm::GMM> {
/**
* @brief Static regression using Gaussian Mixture Models
*/
class rapidXmmGmr : public xmmStaticTool<xmm::GMM, xmm::GMM> {
public:
xmmGmrTool(xmmToolConfig cfg = xmmToolConfig()) :
rapidXmmGmr(xmmToolConfig cfg = xmmToolConfig()) :
xmmStaticTool<xmm::GMM, xmm::GMM>(cfg, true) {}
~xmmGmrTool() {}
~rapidXmmGmr() {}
std::vector<double> process(const std::vector<double>& inputVector);
std::vector<double> run(const std::vector<double>& inputVector);
};
class xmmHmmTool : public xmmTemporalTool<xmm::HMM, xmm::HierarchicalHMM> {
/**
* @brief Temporal classification using Hierarchical Hidden Markov Models
*/
class rapidXmmHmm : public xmmTemporalTool<xmm::HMM, xmm::HierarchicalHMM> {
public:
xmmHmmTool(xmmToolConfig cfg = xmmToolConfig()) :
rapidXmmHmm(xmmToolConfig cfg = xmmToolConfig()) :
xmmTemporalTool<xmm::HMM, xmm::HierarchicalHMM>(cfg, false) {}
~xmmHmmTool() {}
~rapidXmmHmm() {}
std::vector<double> process(const std::vector<double>& inputVector);
std::vector<double> run(const std::vector<double>& inputVector);
};
class xmmHmrTool : public xmmTemporalTool<xmm::HMM, xmm::HierarchicalHMM> {
/**
* @brief Temporal regression using Hierarchical Hidden Markov Models
*/
class rapidXmmHmr : public xmmTemporalTool<xmm::HMM, xmm::HierarchicalHMM> {
public:
xmmHmrTool(xmmToolConfig cfg = xmmToolConfig()) :
rapidXmmHmr(xmmToolConfig cfg = xmmToolConfig()) :
xmmTemporalTool<xmm::HMM, xmm::HierarchicalHMM>(cfg, true) {}
~xmmHmrTool() {}
~rapidXmmHmr() {}
std::vector<double> process(const std::vector<double>& inputVector);
std::vector<double> run(const std::vector<double>& inputVector);
};
#endif /* _RAPID_XMM_TOOLS_H_ */