#include <classification.h>
Public Member Functions | |
classification () | |
classification (const std::vector< trainingExample > &trainingSet) | |
classification (const int &numInputs, const int &numOutputs) | |
~classification () | |
bool | train (const std::vector< trainingExample > &trainingSet) |
![]() | |
modelSet () | |
virtual | ~modelSet () |
bool | initialize () |
std::vector< double > | process (const std::vector< double > &inputVector) |
std::string | getJSON () |
void | writeJSON (const std::string &filepath) |
bool | putJSON (const std::string &jsonMessage) |
bool | readJSON (const std::string &filepath) |
Additional Inherited Members | |
![]() | |
std::vector< baseModel * > | myModelSet |
int | numInputs |
std::vector< std::string > | inputNames |
int | numOutputs |
bool | created |
Class for implementing a set of classification models.
This doesn't do anything modelSet can't do. But, it's simpler and more like wekinator.
classification::classification | ( | ) |
with no arguments, just make an empty vector
classification::classification | ( | const std::vector< trainingExample > & | trainingSet | ) |
create based on training set inputs and outputs
classification::classification | ( | const int & | numInputs, |
const int & | numOutputs | ||
) |
create with proper models, but not trained
|
inline |
destructor
|
virtual |
Train on a specified set, causes creation if not created
Reimplemented from modelSet.