A Totally True Crime Story

Digital Prototypes

The Problems to Solve

Firstly, we broke our game down into the following major problems that require solutions:

Managing Cutscenes;

Handling ‘Evidence’, (Clues, Statements, and Corroborations);
How to display all this information (Ul);

How does the player control the game itself;

Cutscene Manager - Initial System

Started with parsing a separate text file for cutscene instructions
Pros: Easy to understand and read like a script.

Cons: Added an extra layer of separation from unity.

Vulnerable to user error.

Cutscene Manager - System 2

e Similar to the final version, except with a more complicated system of passing variables.

e Multiple bools passed around in order to monitor the completion of different functions between
different scripts

e Slight use of a coroutine, but implemented poorly and no nested coroutines

e Pros: allinunity, controlled through the editor

e Cons: convoluted, required a system of different scripts all tied together in weird ways, has
multiple crash states and hard to follow.

Cutscene Management -
Final System

e Stieredsystem

e Eachlayeris alist of the lower tier

e Nested coroutines allow for a more stable
system that’s easier to understand.

e Pros:still all in editor, much simpler, more stable

e Cons: currently has a small amount of
implementation, camera zoom and movement is
not tied together

Cutscene Manager

Y

Cutscene List

4

Cutscene

Y

Cutscene Event

v

Y

v

Movement Event

Dialogue Event

Camera Event

Player Control - Initial System

Creating the map.

Navmeshing the map.

Problems with creating/navmeshing the map.

Making a detective object.

Using the navmesh to help the detective object move using code.

Detective changing colour when clicked.

Making multiple detectives selectable by holding down an button and clicking on them.

Creating an click n drag selection box using paint.net to create an 3x3 box then using the sprite
editor in unity tofinishit.

e Using the now made selection box to select multiple detectives at once using a click n drag method.

Ul

Started with making a basic system for
the notebook.

Designed the notebook pages and

the timeline separately.

Afterwards, | recreated the Ul design from our paper prototype.

Clues

Clue 1

Some details...

Clue 2

Some details...

Clue 3

Some details...

Clue 4

Some details...

Statements

Statement 1

Some details...

Statement 2

Some details...

Statement 3

Some details...

Statement 4

Some details...

Corroborations

Evidence 1
Happened at 18:30

Evidence 2
Happened at 19:00

Evidence 3
Happened at 20:45

Exit

Merged the notebook into one page with tabs.

Added a corroboration menu to fix errors with switching tabs.
Next step is to add feedback loops to the corroboration system.

Evidence Management - Problems

Need to easily add evidence items into a level.

Three major ‘types’ of evidence that need to be modeled:
o Clue;
o Statement;
o Corroboration;

One of which needs to reference other ‘Evidence’ objects.

Needs to be flexible.

¥ This Room
Name 'Bathroom
Dimensions X1 [¥i{2
¥ Clues
Size [1
¥ Element O
: Detail
Evidence Management - S
Room Found |

System 1 Location Found X O 'y[o

Made use of structs to represent the three ‘Evidence’ types.
Made use of C# Lists on rooms/witnesses to contain and organise clues/statements respectively.
A simple hard-coded timer used to push back the information as it is ‘Discovered’.
Pros:
o Verysimple and usable;

o Instantly formatted for alterations in the inspector;
o Light and efficient;

e Cons:

o Too lightweight? Further development made difficult;
o Corroboration logic would involve the creation of objects anyways - defeats the purpose of using structs;

v All Evidence
Size
Element O
Element 1
Element 2
Element 3

Evidence Management - = s
System 2

6

‘None (Evidence)

‘None (Evidence)

‘None (Evidence)

'None (Evidence)

'None (Evidence)

‘None (Evidence)

e Abase ‘Evidence’ class with the three evidence types represented by child-classes.

e Usingcoroutines to handle the timers tied to searching/interrogating.

e Begantouse a Game Manager to handle the following:
o References to detectives, rooms, and witnesses;
o List of all ‘Evidence’ objects in the level;
o Search/Interrogate and Corroboration logic;

o Much more object-oriented;
o Less abstract;

o Veryinefficient - don’t want to loop through long C# Lists;

o Abitfinnicky to add items into a level. Evidence exists all on the Game Manager;

0 00 0 6 0

v «| Evidence (Script)
Evidence ID
Type
Details
Timestamp
Found in Room
Exact Location
Width, Height

Evidence Management -
Final System

v « Evidence (Script)
Evidence ID
Type
Details

e One Evidence class with an enumerator defining type;

o Enumerators and Inspector editing;
o Added afourth type of evidence, nullEvidence, to define a failed corroboration.

e The Game Manager now gets references to rooms dynamically;

e AnEvidenceHandler class manages: v = Evidence (Script)

o Lists of references to Evidence (Dynamically collected); $;::”°e e

o Collates found’ evidence; Detalls

o Handles corroboration; Evidence 1
Evidence 2

e Added use of an InputManager;

o
"1cot]
[Cme ¢]
[This is clue #1
1000
'None (Room Script) e
x [0 J¥.[0
x [0 ly[o

2 o
11s01 |

Statement 5]

|This is Statement #1 |

3o
1e01]
[Corroboration +]

This is Corroboration #1

1c01

1501

What's Next?

‘Timeline Solution’ system:;

Interrogation math/balancing;

Develop individual detectives;
Peripheral systems - Menu, Settings, etc;
Music & Aesthetics;

Building the levels themselves;

For the most part, story is complete;
Feedback Loops galore;

