
A Totally True Crime Story

Digital Prototypes



The Problems to Solve

Firstly, we broke our game down into the following major problems that require solutions:

● Managing Cutscenes;

● Handling ‘Evidence’, (Clues, Statements, and Corroborations);

● How to display all this information (UI);

● How does the player control the game itself;



Cutscene Manager - Initial System

● Started with parsing a separate text file for cutscene instructions

● Pros: Easy to understand and read like a script.

● Cons: Added an extra layer of separation from unity. 

● Vulnerable to user error.



Cutscene Manager - System 2

● Similar to the final version, except with a more complicated system of passing variables.

● Multiple bools passed around in order to monitor the completion of different functions between 

different scripts

● Slight use of a coroutine, but implemented poorly and no nested coroutines

● Pros: all in unity, controlled through the editor

● Cons: convoluted, required a system of different scripts all tied together in weird ways, has 

multiple crash states and hard to follow. 



Cutscene Management - 
Final System

● 5 tiered system

● Each layer is a list of the lower tier

● Nested coroutines allow for a more stable 

system that’s easier to understand. 

● Pros: still all in editor, much simpler, more stable

● Cons: currently has a small amount of 

implementation, camera zoom and movement is 

not tied together



Player Control - Initial System
● Creating the map.
● Navmeshing the map.
● Problems with creating/navmeshing the map.
● Making a detective object.
● Using the navmesh to help the detective object move using code.
● Detective changing colour when clicked.
● Making multiple detectives selectable by holding down an button and clicking on them.
● Creating an click n drag selection box using paint.net to create an 3x3 box then using the sprite 

editor in unity to finish it.
● Using the now made selection box to select multiple detectives at once using a click n drag method.



UI

● Started with making a basic system for

the notebook.

● Designed the notebook pages and 

the timeline separately.

● Afterwards, I recreated the UI design from our paper prototype.

● Merged the notebook into one page with tabs.

● Added a corroboration menu to fix errors with switching tabs.

● Next step is to add feedback loops to the corroboration system.



Evidence Management - Problems

● Need to easily add evidence items into a level.

● Three major ‘types’ of evidence that need to be modeled:
○ Clue;
○ Statement;
○ Corroboration;

● One of which needs to reference other ‘Evidence’ objects.

● Needs to be flexible.



Evidence Management - 
System 1
● Made use of structs to represent the three ‘Evidence’ types.

● Made use of C# Lists on rooms/witnesses to contain and organise clues/statements respectively.

● A simple hard-coded timer used to push back the information as it is ‘Discovered’.

● Pros:
○ Very simple and usable;
○ Instantly formatted for alterations in the inspector;
○ Light and efficient;

● Cons:
○ Too lightweight? Further development made difficult;
○ Corroboration logic would involve the creation of objects anyways - defeats the purpose of using structs;



Evidence Management - 
System 2

● A base ‘Evidence’ class with the three evidence types represented by child-classes.

● Using coroutines to handle the timers tied to searching/interrogating.

● Began to use a Game Manager to handle the following:
○ References to detectives, rooms, and witnesses;
○ List of all ‘Evidence’ objects in the level;
○ Search/Interrogate and Corroboration logic;

● Pros:
○ Much more object-oriented;
○ Less abstract;

● Cons:
○ Very inefficient - don’t want to loop through long C# Lists;
○ A bit finnicky to add items into a level. Evidence exists all on the Game Manager;



Evidence Management - 
Final System

● One Evidence class with an enumerator defining type;
○ Enumerators and Inspector editing;
○ Added a fourth type of evidence, nullEvidence, to define a failed corroboration.

● The Game Manager now gets references to rooms dynamically;

● An EvidenceHandler class manages:
○ Lists of references to Evidence (Dynamically collected);
○ Collates ‘found’ evidence;
○ Handles corroboration;

● Added use of an InputManager;



What’s Next? 

● ‘Timeline Solution’ system;

● Interrogation math/balancing;

● Develop individual detectives;

● Peripheral systems - Menu, Settings, etc;

● Music & Aesthetics;

● Building the levels themselves;

● For the most part, story is complete;

● Feedback Loops galore;


