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ABSTRACT

We present a method for detecting early signs of Parkinson’s
disease from keystroke hold times that is based on the Ten-
sor Train (TT) decomposition. While simple univariate meth-
ods such as logistic regression have shown good performance
on the given problem by using appropriate features, the TT
format facilitates modelling high-order interactions by repre-
senting the exponentially large parameter tensor in a compact
multilinear form. By performing time-series feature selec-
tion, we show that this approach can significantly improve
upon state-of-the-art for the given problem, reaching a perfor-
mance of AUC=0.88, outperforming compared methods such
as deep neural networks and other linear models.

Index Terms— Tensor Decomposition, Tensor Train,
Feature Extraction, Parkinson’s Disease.

1. INTRODUCTION

take care of whitespace in paper - try to get it to 5 pages
exactly (that is the limit right?) - also make sure format is
OKParkinson’s disease (PD) is one of the world’s most preva-
lent neurodegenerative diseases, second only to Alzheimer’s.
Despite that, PD is diagnosed through a set of neurological
tests at a clinic [1, 2], and is largely based on a specialist in-
terpretation of symptoms. These tests are subjective, costly,
protracted and imprecise, in particular for those who suffer
from Parkinson’s disease at the early stages [3].

In order to provide tools for the early detection and diag-
nosis of Parkinson’s disease that are unobtrusive, ubiquitous,
and cost-effective, the authors of [4, 5] evaluate the accuracy
of predicting early detection of PD through the analysis of
typing logs by several subjects that have PD or belong to the
control group. In these works, keystroke dynamics are anal-
ysed with a focus on hold times (i.e. the length of time be-
tween pressing and releasing a key), as this measure is con-
sidered independent of typing skills. In [4], the utilization of
the so-called neuroQUERTY index (nQi) method is used, in
order to detect PD patients during a testing seession. In [5],
a simpler and easier to reproduce method is proposed that is
based on logistic regression and features designed specifically

for this problem. In more detail, the mean absolute consecu-
tive difference (MACD) feature is utilized in a univariate lo-
gistic regression setting, achieving an AUC=0.85 compared
to 0.81 in [4].

In this paper, we propose a method based on the Tensor
Train decomposition in order to provide even more accurate
models for the detection of early Parkinson’s Disease from
keystroke dynamics. In more detail, the logistic regression
approach utilized in [5] is a special case of the exponential
machines regression presented in [6], where the Tensor Train
decomposition is utilized in order to efficiently learn expo-
nentially many interactions in our data, potentially leading to
better generalization models. As we show in what follows,
the proposed method can achieve an AUC=0.88, in com-
parison to previous work that achieve AUC=0.81 ([4]) and
AUC=0.85 ([5]).

2. RELATED WORK

In this section, we briefly review some of the related work
to this paper. In particular, the neuroQWERTY index(nQi)
method was proposed in [4] to classify the typing sessions of
participants to Parkinson’s sufferer or control group. This pa-
per partitions each typing session into a set of 90 seconds-long
window. These partitions do not overlap and a partition is re-
moved if it contains less than 30 elements. A 7-dimensional
feature vector is created for each window, where each vector
includes the partition’s outliers proportion, skewness, flight
time between consequtive keystrokes, and the proportion
of elements in four equal bins. An ensemble of 200 linear
support vector regression models with grid search hyper-
parameter optimisation is used to be trained with an external
data set. The median of the 200 regression model of each
partition i is the nQii value. The nQi score for a typing
session is defined as the average of medians over I parti-
tions. Ref. [4] achieved Area Under Receiving Operating
Character curve (AUC)= 0.81 by applying cross-validation
training on early PD data set and test on de novo data set.
However, Ref. [5] achieved a similar AUC=0.82 by utilising
a simpler approach that is based on a single feature from each
session, the standard deviation, with a simple logistic regres-
sion model. Furthermore, in [5] a more sophisticated time



series feature has been proposed, namely the mean absolute
consecutive difference (MACD). By using this single feature
from a typing session in the same logistic regression setting,
the authors are able to achieve a performance of AUC=0.85,
while a performance of more than AUC=0.80 is achieved by
just a few hundred keystrokes.

3. DATA SET

The data set used in this paper is drawn from the original
study of [4]. 85 participants are included, with each partic-
ipating in a typing session of around 15 minutes. The dataset
includes 42 Parkinson’s Disease patients and 43 control sub-
jects, that are further separated into two sets. Namely, the first
set includes patients that are newly diagnosed and untreated
(de novo PD), and the second set contains recordings of pa-
tients that have had a confirmed diagnosis in less than five
years (early PD). The de novo PD contains 24 subjects with
Parkinson’s and 30 control, while the early PD 18 Parkinson’s
patients and 13 control.

4. FEATURE EXTRACTION

While many features can be extracted from data, and in par-
ticular from time-series, not every feature is informative and
relevant to the target problem. In order to facilitate feature
extraction in this paper, we utilise the Scalable Hypothesis
(FRESH) algorithm [7]. FRESH encapsulates a collection of
both static and dynamic features, while by performing sig-
nificance testing is able to select the relevant features that are
highly significant with respect to the true labels of the dataset.
We use FRESH on the training data in order to select the most
relevant features for this problem, which are subsequently uti-
lized in the compared learning models after normalising for
mean and unit variance. We note that we use the tsfresh
package, implementing the FRESH algorithm [7]. This pack-
age combines 63 time series characterisation methods to ad-
vance the feature extraction process.

The features with higher significance overall are pre-
sented in Table 4. Briefly, Change quantiles, aggre-
gates consecutive differences between elements of a data
record. Cid ce is an estimate of the time series complexity,
and Fft coefficient calculates the Fourier coefficients
of the one-dimensional discrete Fourier Transform. More
details regarding these features can be found in [8].

5. METHODOLOGY

Matrix component analysis methods have seen rapid develop-
ments over the last decades including Principal Components
Analysis (PCA), Nonnegative Matrix Factorisation (NMF),
Independent Component Analysis (ICA), and Sparse Compo-
nent Analysis (SCA) [10, 11, 12]. These approaches evolved
into standard tools for classification, feature extraction and

Table 1. The list of FRESH functions along with parameters
to produce features. These functions are part of the tsfresh
package [9, 8]

Feature names and related parameters
cid ce( normalize=False)

fft coefficient(coeff=53, attr=abs)
change quantiles(ql=0.6, qh=1.0, isabs=True, f agg=mean)
change quantiles(ql=0.6, qh=0.8, isabs=True, f agg=mean)

blind source separation. Sincerecent heterogeneous sensor
data has a multiway character1, reformatting them as a matrix
and apply classical two-way analysis instead of multiway ar-
ray (tensor) operations are not always a good practice. Instead
of pair-wise analysis, the higher order tensor decomposition
offers an opportunity to capture multiple interactions and cou-
pling through developing complex models. Tensor decompo-
sitions are not only matrix factorisation but also they can cap-
ture multiple interactions and coupling [13]. An approach to
improve the performance of the machine learning algorithms
is to model interactions between features in every order. This
is in contrast to traditional linear models, as modelling such
interactions results in a gigantic parameter tensor, which is
challenging to both train and fit into memory. This problem
can be alleviated by adopting the Tensor Train (TT) repre-
sentation, where an exponentially large tensor can be repre-
sented in a compact multilinear format [14]. In this paper, we
propose utilizing a Tensor Train-based regression framework,
where exponential interactions between our features can be
modelled in an efficient and robust manner. Such interactions
can be modelled by considering the traditional linear model

ŷ(x) = 〈x,w〉+ b,

where the prediction is generated by the dot product of our
features x and parameters w, with an arbitrary loss function
`. To consider all interactions, the model above is extended
following [6] as,

ŷ(x) =

1∑
i1=0

...

1∑
id=0

Wi1...id

d∏
k=1

xikk (1)

where the weight tensorW has a dimension d and contains 2d

elements. xk corresponds to the feature k where k = 1, ..., d,
while subsets of features are enumerated with a binary vector
(i1, . . . , id), with ik = 1 if the k-th feature belongs to the
subset. Given that Eq. 1 can be written as a tensor dot product,
ŷ(x) = 〈X ,W〉, where

Xi1,...,id =

d∏
k=1

xidk . (2)

In this way, the Tensor Train format can be utilized to com-
pactly represent the parameter tensorW .

1not sure what we mean recent here



In more detail, the d-dimensional tensor W is computed
as a product of d− 2 matrices and 2 vectors,

Wi1...id = G1 [i1] ...Gd [id] , (3)

whereG1 [i1] andGd [id] are vectors with dimensions of 1×r
and r×1. For any ik, Gk [ik] where k = 2, ..., d−1, is a r×r
matrix. Gk matrix matching, the same dimension k, is called
as the k-th TT-core. The size r is called as TT-rank of the
tensorW which is the slice-size of Gk [ik]. We note that the
TT-rank adjusts the balance between computation efficiency
of the tensor operations and the representational power of the
TT-format itself [6]. We finally note that the TT-rank of the
Data tensor X is always 1 and this tensor can be represented
TT-core format as:

Gk [ik] = xikk ∈ R1×1, k = 1, ..., d. (4)

Given features extracted as described in Section 4, we ap-
ply the Riemannian optimization2 procedure described in [6]
to which exploits tensor geometry to optimise the parameter
tensorW in the following optimisation problem,

min
W

L(W)

subject to TT-rank(W) = r0 (5)

where

L(W) =

N∑
f=1

`(〈X f ,W〉, y(f)) + λ

2
||W||2F . (6)

6. EXPERIMENTS AND RESULTS

In this section, we present results that compare the proposed
Tensor Decomposition based approach to previous works on
the same dataset, such as [4] and [5], following the same eval-
uation protocol as in previous works. Namely, we compare
with the nQi method presented in [4], the univariate models
presented in [5] that include the Stdev and MACD models, as
well as the multivariate models that utilize the FRESH feature
extraction as described in Sec. 4. Furthermore, we compare
with a model based on Recurrent Neural Networks, and in
particular the so-called Gated Recurrent Units (GRU).

Detailed results are presented in Table 2, where we show
both accuracy and area under the curve (AUC) for each of
the compared methods. Furthermore, in Figure 1, the ROC
curve of the proposed method in comparison to related work
is shown, where FRESH-TT clearly outperforms all com-
pared methods. In the following, we discuss the different
approaches employed along with the resulting scores.

2do we? or is it just gradient descent?

Fig. 1. The ROC curve of the FRESH-TT model and all other
models discussed in this paper namely Stdev, FRESH, MACD
and nQi is presented. Except nQi, all values are reproduced
through the same cross-validation method as described in [4].

Fig. 2. The dependence of classification performance on the
values of TT-ranks between 1 to 100. The best performance
(AUC=0.88) achieved with TT-rank=8. perhaps this could
look better in a table or in-text



Table 2. The performance of all the models evaluated in the
recent papers along with this paper, including True and False
Positives (TP, FP), True and False Negatives (TN, FN), and
area under the curve (AUC).

Model TP FN TN FP AUC
nQi [4] 30 12 36 7 0.81

Stdev [5] 27 15 37 6 0.82
FRESH (5 Features) [5] 36 6 26 17 0.80

MACD [5] 34 8 35 8 0.85
FRESH-GRU 22 20 38 5 0.65

FRESH-LR (4 Features) 29 13 36 7 0.83
FRESH - TT 22 20 39 4 0.88

Fig. 3. The relationship between the number of keystrokes
and classification performance analysed. The x axis presents
the length of truncated time series. In right y axis (blue),
shows the total number of keystrokes analysed over all ses-
sions of 85 participants. The left y axis (red) represents the
AUC obtained by applying the FRESH-TT model over trun-
cated time series. seems to me that the blue line should not be
diagonal

6.1. FRESH - Logistic Regression (FRESH-LR)

To offer a baseline, we use a feature extraction method based
on Scalable Hypothesis algorithm (FRESH) and perform bi-
nary classification by using logistic regression. The selected
features that showed higher significance for the data set are
listed in Table 4. This model evaluated by using the early
PD and the de novo PD data set in the same way that dis-
cussed in [4] to calculate cross-validation. After applying
cross-validation while training on the de novo PD data set
and test on the early PD data set and vice-versa, this model
achieved Area Under curve (AUC)=0.83.

6.2. FRESH - Gated Recurrent Units (FRESH-GRU)

Recurrent Neural Networks (RNN) are well-known for be-
ing able to model arbitrary temporal dependencies when
analysing time series data [15]. We specifically utilize Gated
Recurrent Unit (GRU) since less parameters are required
in comparison to traditional Long Short-Term Memory re-

current neural network (LSTM) [16]. To capture temporal
dependencies, we use GRU as part of this experiment to ben-
efit the same level of LSTM performance while using less
parameters. By experimenting, we concluded that the data is
not sufficient for RNNs to discover the appropriate features,
and as results were low, we resorted in feeding the FRESH
features to the GRU layers which increased the accuracy. The
GRU model on this data achieves an AUC=0.65, which is
quite lower than compared models. This is likely due to the
number of data available for the given problem and dataset.

6.3. FRESH - Tensor Train (FRESH-TT)

Fresh with Tensor Train (TT-FRESH) represents the results
for the methodology proposed in this paper, as described in
Section 5. After featrure extraction, we utilize the TT decom-
position to represent and estimate the model parameters in
the TT-format. We utilize the T3F library that provides tools
for working with the TT decomposition, supporting GPU ex-
ecuting and parallel processing of tensor batches. We utilize
this library for implementing the TT model. As can be clearly
seen in Table 2 and Figure 1, the proposed method achieves an
AUC=0.88, outperforming the second-best method proposed
in [5] with AUC=0.85.

7. CONCLUSION

In this paper, we proposed a method based on appropri-
ate feature extraction and tensor decompositions in order to
model high-order interactions in the problem of detecting
early Parkinson’s disease from keystroke dynamics. We com-
pare against related methods in literature, including recurrent
neural networks and linear models. We show that our method
improves results, providing an AUC=0.88, while still being
efficient in terms of complexity.
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