#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include <ctype.h>
#include <float.h>
#include <string.h>
#include <stdarg.h>
#include <limits.h>
#include <locale.h>
#include "libsvm.h"

namespace LIBSVM {
    int libsvm_version = LIBSVM_VERSION;
    typedef float Qfloat;
    typedef signed char schar;
#ifndef min
    template <class T> static inline T min(T x,T y) { return (x<y)?x:y; }
#endif
#ifndef max
    template <class T> static inline T max(T x,T y) { return (x>y)?x:y; }
#endif
    template <class T> static inline void swap(T& x, T& y) { T t=x; x=y; y=t; }
    template <class S, class T> static inline void clone(T*& dst, S* src, int n)
    {
        dst = new T[n];
        memcpy((void *)dst,(void *)src,sizeof(T)*n);
    }
    static inline double powi(double base, int times)
    {
        double tmp = base, ret = 1.0;
        
        for(int t=times; t>0; t/=2)
        {
            if(t%2==1) ret*=tmp;
            tmp = tmp * tmp;
        }
        return ret;
    }
#define INF HUGE_VAL
#define TAU 1e-12
#define Malloc(type,n) (type *)malloc((n)*sizeof(type))
    
    static void print_string_stdout(const char *s)
    {
        fputs(s,stdout);
        fflush(stdout);
    }
    static void (*svm_print_string) (const char *) = &print_string_stdout;
#if 1
    static void info(const char *fmt,...)
    {
        char buf[BUFSIZ];
        va_list ap;
        va_start(ap,fmt);
        vsprintf(buf,fmt,ap);
        va_end(ap);
        (*svm_print_string)(buf);
    }
#else
    static void info(const char *fmt,...) {}
#endif
    
    //
    // Kernel Cache
    //
    // l is the number of total data items
    // size is the cache size limit in bytes
    //
    class Cache
    {
    public:
        Cache(int l,long int size);
        ~Cache();
        
        // request data [0,len)
        // return some position p where [p,len) need to be filled
        // (p >= len if nothing needs to be filled)
        int get_data(const int index, Qfloat **data, int len);
        void swap_index(int i, int j);
    private:
        int l;
        long int size;
        struct head_t
        {
            head_t *prev, *next;	// a circular list
            Qfloat *data;
            int len;		// data[0,len) is cached in this entry
        };
        
        head_t *head;
        head_t lru_head;
        void lru_delete(head_t *h);
        void lru_insert(head_t *h);
    };
    
    Cache::Cache(int l_,long int size_):l(l_),size(size_)
    {
        head = (head_t *)calloc(l,sizeof(head_t));	// initialized to 0
        size /= sizeof(Qfloat);
        size -= l * sizeof(head_t) / sizeof(Qfloat);
        size = max(size, 2 * (long int) l);	// cache must be large enough for two columns
        lru_head.next = lru_head.prev = &lru_head;
    }
    
    Cache::~Cache()
    {
        for(head_t *h = lru_head.next; h != &lru_head; h=h->next)
            free(h->data);
        free(head);
    }
    
    void Cache::lru_delete(head_t *h)
    {
        // delete from current location
        h->prev->next = h->next;
        h->next->prev = h->prev;
    }
    
    void Cache::lru_insert(head_t *h)
    {
        // insert to last position
        h->next = &lru_head;
        h->prev = lru_head.prev;
        h->prev->next = h;
        h->next->prev = h;
    }
    
    int Cache::get_data(const int index, Qfloat **data, int len)
    {
        head_t *h = &head[index];
        if(h->len) lru_delete(h);
        int more = len - h->len;
        
        if(more > 0)
        {
            // free old space
            while(size < more)
            {
                head_t *old = lru_head.next;
                lru_delete(old);
                free(old->data);
                size += old->len;
                old->data = 0;
                old->len = 0;
            }
            
            // allocate new space
            h->data = (Qfloat *)realloc(h->data,sizeof(Qfloat)*len);
            size -= more;
            swap(h->len,len);
        }
        
        lru_insert(h);
        *data = h->data;
        return len;
    }
    
    void Cache::swap_index(int i, int j)
    {
        if(i==j) return;
        
        if(head[i].len) lru_delete(&head[i]);
        if(head[j].len) lru_delete(&head[j]);
        swap(head[i].data,head[j].data);
        swap(head[i].len,head[j].len);
        if(head[i].len) lru_insert(&head[i]);
        if(head[j].len) lru_insert(&head[j]);
        
        if(i>j) swap(i,j);
        for(head_t *h = lru_head.next; h!=&lru_head; h=h->next)
        {
            if(h->len > i)
            {
                if(h->len > j)
                    swap(h->data[i],h->data[j]);
                else
                {
                    // give up
                    lru_delete(h);
                    free(h->data);
                    size += h->len;
                    h->data = 0;
                    h->len = 0;
                }
            }
        }
    }
    
    //
    // Kernel evaluation
    //
    // the static method k_function is for doing single kernel evaluation
    // the constructor of Kernel prepares to calculate the l*l kernel matrix
    // the member function get_Q is for getting one column from the Q Matrix
    //
    class QMatrix {
    public:
        virtual Qfloat *get_Q(int column, int len) const = 0;
        virtual double *get_QD() const = 0;
        virtual void swap_index(int i, int j) const = 0;
        virtual ~QMatrix() {}
    };
    
    class Kernel: public QMatrix {
    public:
        Kernel(int l, svm_node * const * x, const svm_parameter& param);
        virtual ~Kernel();
        
        static double k_function(const svm_node *x, const svm_node *y,
                                 const svm_parameter& param);
        virtual Qfloat *get_Q(int column, int len) const = 0;
        virtual double *get_QD() const = 0;
        virtual void swap_index(int i, int j) const	// no so const...
        {
            swap(x[i],x[j]);
            if(x_square) swap(x_square[i],x_square[j]);
        }
    protected:
        
        double (Kernel::*kernel_function)(int i, int j) const;
        
    private:
        const svm_node **x;
        double *x_square;
        
        // svm_parameter
        const int kernel_type;
        const int degree;
        const double gamma;
        const double coef0;
        
        static double dot(const svm_node *px, const svm_node *py);
        double kernel_linear(int i, int j) const
        {
            return dot(x[i],x[j]);
        }
        double kernel_poly(int i, int j) const
        {
            return powi(gamma*dot(x[i],x[j])+coef0,degree);
        }
        double kernel_rbf(int i, int j) const
        {
            return exp(-gamma*(x_square[i]+x_square[j]-2*dot(x[i],x[j])));
        }
        double kernel_sigmoid(int i, int j) const
        {
            return tanh(gamma*dot(x[i],x[j])+coef0);
        }
        double kernel_precomputed(int i, int j) const
        {
            return x[i][(int)(x[j][0].value)].value;
        }
    };
    
    Kernel::Kernel(int l, svm_node * const * x_, const svm_parameter& param)
    :kernel_type(param.kernel_type), degree(param.degree),
    gamma(param.gamma), coef0(param.coef0)
    {
        switch(kernel_type)
        {
            case LINEAR:
                kernel_function = &Kernel::kernel_linear;
                break;
            case POLY:
                kernel_function = &Kernel::kernel_poly;
                break;
            case RBF:
                kernel_function = &Kernel::kernel_rbf;
                break;
            case SIGMOID:
                kernel_function = &Kernel::kernel_sigmoid;
                break;
            case PRECOMPUTED:
                kernel_function = &Kernel::kernel_precomputed;
                break;
        }
        
        clone(x,x_,l);
        
        if(kernel_type == RBF)
        {
            x_square = new double[l];
            for(int i=0;i<l;i++)
                x_square[i] = dot(x[i],x[i]);
        }
        else
            x_square = 0;
    }
    
    Kernel::~Kernel()
    {
        delete[] x;
        delete[] x_square;
    }
    
    double Kernel::dot(const svm_node *px, const svm_node *py)
    {
        double sum = 0;
        while(px->index != -1 && py->index != -1)
        {
            if(px->index == py->index)
            {
                sum += px->value * py->value;
                ++px;
                ++py;
            }
            else
            {
                if(px->index > py->index)
                    ++py;
                else
                    ++px;
            }
        }
        return sum;
    }
    
    double Kernel::k_function(const svm_node *x, const svm_node *y,
                              const svm_parameter& param)
    {
        switch(param.kernel_type)
        {
            case LINEAR:
                return dot(x,y);
            case POLY:
                return powi(param.gamma*dot(x,y)+param.coef0,param.degree);
            case RBF:
            {
                double sum = 0;
                while(x->index != -1 && y->index !=-1)
                {
                    if(x->index == y->index)
                    {
                        double d = x->value - y->value;
                        sum += d*d;
                        ++x;
                        ++y;
                    }
                    else
                    {
                        if(x->index > y->index)
                        {
                            sum += y->value * y->value;
                            ++y;
                        }
                        else
                        {
                            sum += x->value * x->value;
                            ++x;
                        }
                    }
                }
                
                while(x->index != -1)
                {
                    sum += x->value * x->value;
                    ++x;
                }
                
                while(y->index != -1)
                {
                    sum += y->value * y->value;
                    ++y;
                }
                
                return exp(-param.gamma*sum);
            }
            case SIGMOID:
                return tanh(param.gamma*dot(x,y)+param.coef0);
            case PRECOMPUTED:  //x: test (validation), y: SV
                return x[(int)(y->value)].value;
            default:
                return 0;  // Unreachable
        }
    }
    
    // An SMO algorithm in Fan et al., JMLR 6(2005), p. 1889--1918
    // Solves:
    //
    //	min 0.5(\alpha^T Q \alpha) + p^T \alpha
    //
    //		y^T \alpha = \delta
    //		y_i = +1 or -1
    //		0 <= alpha_i <= Cp for y_i = 1
    //		0 <= alpha_i <= Cn for y_i = -1
    //
    // Given:
    //
    //	Q, p, y, Cp, Cn, and an initial feasible point \alpha
    //	l is the size of vectors and matrices
    //	eps is the stopping tolerance
    //
    // solution will be put in \alpha, objective value will be put in obj
    //
    class Solver {
    public:
        Solver() {};
        virtual ~Solver() {};
        
        struct SolutionInfo {
            double obj;
            double rho;
            double upper_bound_p;
            double upper_bound_n;
            double r;	// for Solver_NU
        };
        
        void Solve(int l, const QMatrix& Q, const double *p_, const schar *y_,
                   double *alpha_, double Cp, double Cn, double eps,
                   SolutionInfo* si, int shrinking);
    protected:
        int active_size;
        schar *y;
        double *G;		// gradient of objective function
        enum { LOWER_BOUND, UPPER_BOUND, FREE };
        char *alpha_status;	// LOWER_BOUND, UPPER_BOUND, FREE
        double *alpha;
        const QMatrix *Q;
        const double *QD;
        double eps;
        double Cp,Cn;
        double *p;
        int *active_set;
        double *G_bar;		// gradient, if we treat free variables as 0
        int l;
        bool unshrink;	// XXX
        
        double get_C(int i)
        {
            return (y[i] > 0)? Cp : Cn;
        }
        void update_alpha_status(int i)
        {
            if(alpha[i] >= get_C(i))
                alpha_status[i] = UPPER_BOUND;
            else if(alpha[i] <= 0)
                alpha_status[i] = LOWER_BOUND;
            else alpha_status[i] = FREE;
        }
        bool is_upper_bound(int i) { return alpha_status[i] == UPPER_BOUND; }
        bool is_lower_bound(int i) { return alpha_status[i] == LOWER_BOUND; }
        bool is_free(int i) { return alpha_status[i] == FREE; }
        void swap_index(int i, int j);
        void reconstruct_gradient();
        virtual int select_working_set(int &i, int &j);
        virtual double calculate_rho();
        virtual void do_shrinking();
    private:
        bool be_shrunk(int i, double Gmax1, double Gmax2);
    };
    
    void Solver::swap_index(int i, int j)
    {
        Q->swap_index(i,j);
        swap(y[i],y[j]);
        swap(G[i],G[j]);
        swap(alpha_status[i],alpha_status[j]);
        swap(alpha[i],alpha[j]);
        swap(p[i],p[j]);
        swap(active_set[i],active_set[j]);
        swap(G_bar[i],G_bar[j]);
    }
    
    void Solver::reconstruct_gradient()
    {
        // reconstruct inactive elements of G from G_bar and free variables
        
        if(active_size == l) return;
        
        int i,j;
        int nr_free = 0;
        
        for(j=active_size;j<l;j++)
            G[j] = G_bar[j] + p[j];
        
        for(j=0;j<active_size;j++)
            if(is_free(j))
                nr_free++;
        
        if(2*nr_free < active_size)
            info("\nWARNING: using -h 0 may be faster\n");
        
        if (nr_free*l > 2*active_size*(l-active_size))
        {
            for(i=active_size;i<l;i++)
            {
                const Qfloat *Q_i = Q->get_Q(i,active_size);
                for(j=0;j<active_size;j++)
                    if(is_free(j))
                        G[i] += alpha[j] * Q_i[j];
            }
        }
        else
        {
            for(i=0;i<active_size;i++)
                if(is_free(i))
                {
                    const Qfloat *Q_i = Q->get_Q(i,l);
                    double alpha_i = alpha[i];
                    for(j=active_size;j<l;j++)
                        G[j] += alpha_i * Q_i[j];
                }
        }
    }
    
    void Solver::Solve(int l, const QMatrix& Q, const double *p_, const schar *y_,
                       double *alpha_, double Cp, double Cn, double eps,
                       SolutionInfo* si, int shrinking)
    {
        this->l = l;
        this->Q = &Q;
        QD=Q.get_QD();
        clone(p, p_,l);
        clone(y, y_,l);
        clone(alpha,alpha_,l);
        this->Cp = Cp;
        this->Cn = Cn;
        this->eps = eps;
        unshrink = false;
        
        // initialize alpha_status
        {
            alpha_status = new char[l];
            for(int i=0;i<l;i++)
                update_alpha_status(i);
        }
        
        // initialize active set (for shrinking)
        {
            active_set = new int[l];
            for(int i=0;i<l;i++)
                active_set[i] = i;
            active_size = l;
        }
        
        // initialize gradient
        {
            G = new double[l];
            G_bar = new double[l];
            int i;
            for(i=0;i<l;i++)
            {
                G[i] = p[i];
                G_bar[i] = 0;
            }
            for(i=0;i<l;i++)
                if(!is_lower_bound(i))
                {
                    const Qfloat *Q_i = Q.get_Q(i,l);
                    double alpha_i = alpha[i];
                    int j;
                    for(j=0;j<l;j++)
                        G[j] += alpha_i*Q_i[j];
                    if(is_upper_bound(i))
                        for(j=0;j<l;j++)
                            G_bar[j] += get_C(i) * Q_i[j];
                }
        }
        
        // optimization step
        
        int iter = 0;
        int max_iter = max(10000000, l>INT_MAX/100 ? INT_MAX : 100*l);
        int counter = min(l,1000)+1;
        
        while(iter < max_iter)
        {
            // show progress and do shrinking
            
            if(--counter == 0)
            {
                counter = min(l,1000);
                if(shrinking) do_shrinking();
                info(".");
            }
            
            int i,j;
            if(select_working_set(i,j)!=0)
            {
                // reconstruct the whole gradient
                reconstruct_gradient();
                // reset active set size and check
                active_size = l;
                info("*");
                if(select_working_set(i,j)!=0)
                    break;
                else
                    counter = 1;	// do shrinking next iteration
            }
            
            ++iter;
            
            // update alpha[i] and alpha[j], handle bounds carefully
            
            const Qfloat *Q_i = Q.get_Q(i,active_size);
            const Qfloat *Q_j = Q.get_Q(j,active_size);
            
            double C_i = get_C(i);
            double C_j = get_C(j);
            
            double old_alpha_i = alpha[i];
            double old_alpha_j = alpha[j];
            
            if(y[i]!=y[j])
            {
                double quad_coef = QD[i]+QD[j]+2*Q_i[j];
                if (quad_coef <= 0)
                    quad_coef = TAU;
                double delta = (-G[i]-G[j])/quad_coef;
                double diff = alpha[i] - alpha[j];
                alpha[i] += delta;
                alpha[j] += delta;
                
                if(diff > 0)
                {
                    if(alpha[j] < 0)
                    {
                        alpha[j] = 0;
                        alpha[i] = diff;
                    }
                }
                else
                {
                    if(alpha[i] < 0)
                    {
                        alpha[i] = 0;
                        alpha[j] = -diff;
                    }
                }
                if(diff > C_i - C_j)
                {
                    if(alpha[i] > C_i)
                    {
                        alpha[i] = C_i;
                        alpha[j] = C_i - diff;
                    }
                }
                else
                {
                    if(alpha[j] > C_j)
                    {
                        alpha[j] = C_j;
                        alpha[i] = C_j + diff;
                    }
                }
            }
            else
            {
                double quad_coef = QD[i]+QD[j]-2*Q_i[j];
                if (quad_coef <= 0)
                    quad_coef = TAU;
                double delta = (G[i]-G[j])/quad_coef;
                double sum = alpha[i] + alpha[j];
                alpha[i] -= delta;
                alpha[j] += delta;
                
                if(sum > C_i)
                {
                    if(alpha[i] > C_i)
                    {
                        alpha[i] = C_i;
                        alpha[j] = sum - C_i;
                    }
                }
                else
                {
                    if(alpha[j] < 0)
                    {
                        alpha[j] = 0;
                        alpha[i] = sum;
                    }
                }
                if(sum > C_j)
                {
                    if(alpha[j] > C_j)
                    {
                        alpha[j] = C_j;
                        alpha[i] = sum - C_j;
                    }
                }
                else
                {
                    if(alpha[i] < 0)
                    {
                        alpha[i] = 0;
                        alpha[j] = sum;
                    }
                }
            }
            
            // update G
            
            double delta_alpha_i = alpha[i] - old_alpha_i;
            double delta_alpha_j = alpha[j] - old_alpha_j;
            
            for(int k=0;k<active_size;k++)
            {
                G[k] += Q_i[k]*delta_alpha_i + Q_j[k]*delta_alpha_j;
            }
            
            // update alpha_status and G_bar
            
            {
                bool ui = is_upper_bound(i);
                bool uj = is_upper_bound(j);
                update_alpha_status(i);
                update_alpha_status(j);
                int k;
                if(ui != is_upper_bound(i))
                {
                    Q_i = Q.get_Q(i,l);
                    if(ui)
                        for(k=0;k<l;k++)
                            G_bar[k] -= C_i * Q_i[k];
                    else
                        for(k=0;k<l;k++)
                            G_bar[k] += C_i * Q_i[k];
                }
                
                if(uj != is_upper_bound(j))
                {
                    Q_j = Q.get_Q(j,l);
                    if(uj)
                        for(k=0;k<l;k++)
                            G_bar[k] -= C_j * Q_j[k];
                    else
                        for(k=0;k<l;k++)
                            G_bar[k] += C_j * Q_j[k];
                }
            }
        }
        
        if(iter >= max_iter)
        {
            if(active_size < l)
            {
                // reconstruct the whole gradient to calculate objective value
                reconstruct_gradient();
                active_size = l;
                info("*");
            }
            fprintf(stderr,"\nWARNING: reaching max number of iterations\n");
        }
        
        // calculate rho
        
        si->rho = calculate_rho();
        
        // calculate objective value
        {
            double v = 0;
            int i;
            for(i=0;i<l;i++)
                v += alpha[i] * (G[i] + p[i]);
            
            si->obj = v/2;
        }
        
        // put back the solution
        {
            for(int i=0;i<l;i++)
                alpha_[active_set[i]] = alpha[i];
        }
        
        // juggle everything back
        /*{
         for(int i=0;i<l;i++)
         while(active_set[i] != i)
         swap_index(i,active_set[i]);
         // or Q.swap_index(i,active_set[i]);
         }*/
        
        si->upper_bound_p = Cp;
        si->upper_bound_n = Cn;
        
        info("\noptimization finished, #iter = %d\n",iter);
        
        delete[] p;
        delete[] y;
        delete[] alpha;
        delete[] alpha_status;
        delete[] active_set;
        delete[] G;
        delete[] G_bar;
    }
    
    // return 1 if already optimal, return 0 otherwise
    int Solver::select_working_set(int &out_i, int &out_j)
    {
        // return i,j such that
        // i: maximizes -y_i * grad(f)_i, i in I_up(\alpha)
        // j: minimizes the decrease of obj value
        //    (if quadratic coefficeint <= 0, replace it with tau)
        //    -y_j*grad(f)_j < -y_i*grad(f)_i, j in I_low(\alpha)
        
        double Gmax = -INF;
        double Gmax2 = -INF;
        int Gmax_idx = -1;
        int Gmin_idx = -1;
        double obj_diff_min = INF;
        
        for(int t=0;t<active_size;t++)
            if(y[t]==+1)
            {
                if(!is_upper_bound(t))
                    if(-G[t] >= Gmax)
                    {
                        Gmax = -G[t];
                        Gmax_idx = t;
                    }
            }
            else
            {
                if(!is_lower_bound(t))
                    if(G[t] >= Gmax)
                    {
                        Gmax = G[t];
                        Gmax_idx = t;
                    }
            }
        
        int i = Gmax_idx;
        const Qfloat *Q_i = NULL;
        if(i != -1) // NULL Q_i not accessed: Gmax=-INF if i=-1
            Q_i = Q->get_Q(i,active_size);
        
        for(int j=0;j<active_size;j++)
        {
            if(y[j]==+1)
            {
                if (!is_lower_bound(j))
                {
                    double grad_diff=Gmax+G[j];
                    if (G[j] >= Gmax2)
                        Gmax2 = G[j];
                    if (grad_diff > 0)
                    {
                        double obj_diff;
                        double quad_coef = QD[i]+QD[j]-2.0*y[i]*Q_i[j];
                        if (quad_coef > 0)
                            obj_diff = -(grad_diff*grad_diff)/quad_coef;
                        else
                            obj_diff = -(grad_diff*grad_diff)/TAU;
                        
                        if (obj_diff <= obj_diff_min)
                        {
                            Gmin_idx=j;
                            obj_diff_min = obj_diff;
                        }
                    }
                }
            }
            else
            {
                if (!is_upper_bound(j))
                {
                    double grad_diff= Gmax-G[j];
                    if (-G[j] >= Gmax2)
                        Gmax2 = -G[j];
                    if (grad_diff > 0)
                    {
                        double obj_diff;
                        double quad_coef = QD[i]+QD[j]+2.0*y[i]*Q_i[j];
                        if (quad_coef > 0)
                            obj_diff = -(grad_diff*grad_diff)/quad_coef;
                        else
                            obj_diff = -(grad_diff*grad_diff)/TAU;
                        
                        if (obj_diff <= obj_diff_min)
                        {
                            Gmin_idx=j;
                            obj_diff_min = obj_diff;
                        }
                    }
                }
            }
        }
        
        if(Gmax+Gmax2 < eps || Gmin_idx == -1)
            return 1;
        
        out_i = Gmax_idx;
        out_j = Gmin_idx;
        return 0;
    }
    
    bool Solver::be_shrunk(int i, double Gmax1, double Gmax2)
    {
        if(is_upper_bound(i))
        {
            if(y[i]==+1)
                return(-G[i] > Gmax1);
            else
                return(-G[i] > Gmax2);
        }
        else if(is_lower_bound(i))
        {
            if(y[i]==+1)
                return(G[i] > Gmax2);
            else
                return(G[i] > Gmax1);
        }
        else
            return(false);
    }
    
    void Solver::do_shrinking()
    {
        int i;
        double Gmax1 = -INF;		// max { -y_i * grad(f)_i | i in I_up(\alpha) }
        double Gmax2 = -INF;		// max { y_i * grad(f)_i | i in I_low(\alpha) }
        
        // find maximal violating pair first
        for(i=0;i<active_size;i++)
        {
            if(y[i]==+1)
            {
                if(!is_upper_bound(i))
                {
                    if(-G[i] >= Gmax1)
                        Gmax1 = -G[i];
                }
                if(!is_lower_bound(i))
                {
                    if(G[i] >= Gmax2)
                        Gmax2 = G[i];
                }
            }
            else
            {
                if(!is_upper_bound(i))
                {
                    if(-G[i] >= Gmax2)
                        Gmax2 = -G[i];
                }
                if(!is_lower_bound(i))
                {
                    if(G[i] >= Gmax1)
                        Gmax1 = G[i];
                }
            }
        }
        
        if(unshrink == false && Gmax1 + Gmax2 <= eps*10)
        {
            unshrink = true;
            reconstruct_gradient();
            active_size = l;
            info("*");
        }
        
        for(i=0;i<active_size;i++)
            if (be_shrunk(i, Gmax1, Gmax2))
            {
                active_size--;
                while (active_size > i)
                {
                    if (!be_shrunk(active_size, Gmax1, Gmax2))
                    {
                        swap_index(i,active_size);
                        break;
                    }
                    active_size--;
                }
            }
    }
    
    double Solver::calculate_rho()
    {
        double r;
        int nr_free = 0;
        double ub = INF, lb = -INF, sum_free = 0;
        for(int i=0;i<active_size;i++)
        {
            double yG = y[i]*G[i];
            
            if(is_upper_bound(i))
            {
                if(y[i]==-1)
                    ub = min(ub,yG);
                else
                    lb = max(lb,yG);
            }
            else if(is_lower_bound(i))
            {
                if(y[i]==+1)
                    ub = min(ub,yG);
                else
                    lb = max(lb,yG);
            }
            else
            {
                ++nr_free;
                sum_free += yG;
            }
        }
        
        if(nr_free>0)
            r = sum_free/nr_free;
        else
            r = (ub+lb)/2;
        
        return r;
    }
    
    //
    // Solver for nu-svm classification and regression
    //
    // additional constraint: e^T \alpha = constant
    //
    class Solver_NU: public Solver
    {
    public:
        Solver_NU() {}
        void Solve(int l, const QMatrix& Q, const double *p, const schar *y,
                   double *alpha, double Cp, double Cn, double eps,
                   SolutionInfo* si, int shrinking)
        {
            this->si = si;
            Solver::Solve(l,Q,p,y,alpha,Cp,Cn,eps,si,shrinking);
        }
    private:
        SolutionInfo *si;
        int select_working_set(int &i, int &j);
        double calculate_rho();
        bool be_shrunk(int i, double Gmax1, double Gmax2, double Gmax3, double Gmax4);
        void do_shrinking();
    };
    
    // return 1 if already optimal, return 0 otherwise
    int Solver_NU::select_working_set(int &out_i, int &out_j)
    {
        // return i,j such that y_i = y_j and
        // i: maximizes -y_i * grad(f)_i, i in I_up(\alpha)
        // j: minimizes the decrease of obj value
        //    (if quadratic coefficeint <= 0, replace it with tau)
        //    -y_j*grad(f)_j < -y_i*grad(f)_i, j in I_low(\alpha)
        
        double Gmaxp = -INF;
        double Gmaxp2 = -INF;
        int Gmaxp_idx = -1;
        
        double Gmaxn = -INF;
        double Gmaxn2 = -INF;
        int Gmaxn_idx = -1;
        
        int Gmin_idx = -1;
        double obj_diff_min = INF;
        
        for(int t=0;t<active_size;t++)
            if(y[t]==+1)
            {
                if(!is_upper_bound(t))
                    if(-G[t] >= Gmaxp)
                    {
                        Gmaxp = -G[t];
                        Gmaxp_idx = t;
                    }
            }
            else
            {
                if(!is_lower_bound(t))
                    if(G[t] >= Gmaxn)
                    {
                        Gmaxn = G[t];
                        Gmaxn_idx = t;
                    }
            }
        
        int ip = Gmaxp_idx;
        int in = Gmaxn_idx;
        const Qfloat *Q_ip = NULL;
        const Qfloat *Q_in = NULL;
        if(ip != -1) // NULL Q_ip not accessed: Gmaxp=-INF if ip=-1
            Q_ip = Q->get_Q(ip,active_size);
        if(in != -1)
            Q_in = Q->get_Q(in,active_size);
        
        for(int j=0;j<active_size;j++)
        {
            if(y[j]==+1)
            {
                if (!is_lower_bound(j))
                {
                    double grad_diff=Gmaxp+G[j];
                    if (G[j] >= Gmaxp2)
                        Gmaxp2 = G[j];
                    if (grad_diff > 0)
                    {
                        double obj_diff;
                        double quad_coef = QD[ip]+QD[j]-2*Q_ip[j];
                        if (quad_coef > 0)
                            obj_diff = -(grad_diff*grad_diff)/quad_coef;
                        else
                            obj_diff = -(grad_diff*grad_diff)/TAU;
                        
                        if (obj_diff <= obj_diff_min)
                        {
                            Gmin_idx=j;
                            obj_diff_min = obj_diff;
                        }
                    }
                }
            }
            else
            {
                if (!is_upper_bound(j))
                {
                    double grad_diff=Gmaxn-G[j];
                    if (-G[j] >= Gmaxn2)
                        Gmaxn2 = -G[j];
                    if (grad_diff > 0)
                    {
                        double obj_diff;
                        double quad_coef = QD[in]+QD[j]-2*Q_in[j];
                        if (quad_coef > 0)
                            obj_diff = -(grad_diff*grad_diff)/quad_coef;
                        else
                            obj_diff = -(grad_diff*grad_diff)/TAU;
                        
                        if (obj_diff <= obj_diff_min)
                        {
                            Gmin_idx=j;
                            obj_diff_min = obj_diff;
                        }
                    }
                }
            }
        }
        
        if(max(Gmaxp+Gmaxp2,Gmaxn+Gmaxn2) < eps || Gmin_idx == -1)
            return 1;
        
        if (y[Gmin_idx] == +1)
            out_i = Gmaxp_idx;
        else
            out_i = Gmaxn_idx;
        out_j = Gmin_idx;
        
        return 0;
    }
    
    bool Solver_NU::be_shrunk(int i, double Gmax1, double Gmax2, double Gmax3, double Gmax4)
    {
        if(is_upper_bound(i))
        {
            if(y[i]==+1)
                return(-G[i] > Gmax1);
            else
                return(-G[i] > Gmax4);
        }
        else if(is_lower_bound(i))
        {
            if(y[i]==+1)
                return(G[i] > Gmax2);
            else
                return(G[i] > Gmax3);
        }
        else
            return(false);
    }
    
    void Solver_NU::do_shrinking()
    {
        double Gmax1 = -INF;	// max { -y_i * grad(f)_i | y_i = +1, i in I_up(\alpha) }
        double Gmax2 = -INF;	// max { y_i * grad(f)_i | y_i = +1, i in I_low(\alpha) }
        double Gmax3 = -INF;	// max { -y_i * grad(f)_i | y_i = -1, i in I_up(\alpha) }
        double Gmax4 = -INF;	// max { y_i * grad(f)_i | y_i = -1, i in I_low(\alpha) }
        
        // find maximal violating pair first
        int i;
        for(i=0;i<active_size;i++)
        {
            if(!is_upper_bound(i))
            {
                if(y[i]==+1)
                {
                    if(-G[i] > Gmax1) Gmax1 = -G[i];
                }
                else	if(-G[i] > Gmax4) Gmax4 = -G[i];
            }
            if(!is_lower_bound(i))
            {
                if(y[i]==+1)
                {
                    if(G[i] > Gmax2) Gmax2 = G[i];
                }
                else	if(G[i] > Gmax3) Gmax3 = G[i];
            }
        }
        
        if(unshrink == false && max(Gmax1+Gmax2,Gmax3+Gmax4) <= eps*10)
        {
            unshrink = true;
            reconstruct_gradient();
            active_size = l;
        }
        
        for(i=0;i<active_size;i++)
            if (be_shrunk(i, Gmax1, Gmax2, Gmax3, Gmax4))
            {
                active_size--;
                while (active_size > i)
                {
                    if (!be_shrunk(active_size, Gmax1, Gmax2, Gmax3, Gmax4))
                    {
                        swap_index(i,active_size);
                        break;
                    }
                    active_size--;
                }
            }
    }
    
    double Solver_NU::calculate_rho()
    {
        int nr_free1 = 0,nr_free2 = 0;
        double ub1 = INF, ub2 = INF;
        double lb1 = -INF, lb2 = -INF;
        double sum_free1 = 0, sum_free2 = 0;
        
        for(int i=0;i<active_size;i++)
        {
            if(y[i]==+1)
            {
                if(is_upper_bound(i))
                    lb1 = max(lb1,G[i]);
                else if(is_lower_bound(i))
                    ub1 = min(ub1,G[i]);
                else
                {
                    ++nr_free1;
                    sum_free1 += G[i];
                }
            }
            else
            {
                if(is_upper_bound(i))
                    lb2 = max(lb2,G[i]);
                else if(is_lower_bound(i))
                    ub2 = min(ub2,G[i]);
                else
                {
                    ++nr_free2;
                    sum_free2 += G[i];
                }
            }
        }
        
        double r1,r2;
        if(nr_free1 > 0)
            r1 = sum_free1/nr_free1;
        else
            r1 = (ub1+lb1)/2;
        
        if(nr_free2 > 0)
            r2 = sum_free2/nr_free2;
        else
            r2 = (ub2+lb2)/2;
        
        si->r = (r1+r2)/2;
        return (r1-r2)/2;
    }
    
    //
    // Q matrices for various formulations
    //
    class SVC_Q: public Kernel
    {
    public:
        SVC_Q(const svm_problem& prob, const svm_parameter& param, const schar *y_)
        :Kernel(prob.l, prob.x, param)
        {
            clone(y,y_,prob.l);
            cache = new Cache(prob.l,(long int)(param.cache_size*(1<<20)));
            QD = new double[prob.l];
            for(int i=0;i<prob.l;i++)
                QD[i] = (this->*kernel_function)(i,i);
        }
        
        Qfloat *get_Q(int i, int len) const
        {
            Qfloat *data;
            int start, j;
            if((start = cache->get_data(i,&data,len)) < len)
            {
                for(j=start;j<len;j++)
                    data[j] = (Qfloat)(y[i]*y[j]*(this->*kernel_function)(i,j));
            }
            return data;
        }
        
        double *get_QD() const
        {
            return QD;
        }
        
        void swap_index(int i, int j) const
        {
            cache->swap_index(i,j);
            Kernel::swap_index(i,j);
            swap(y[i],y[j]);
            swap(QD[i],QD[j]);
        }
        
        ~SVC_Q()
        {
            delete[] y;
            delete cache;
            delete[] QD;
        }
    private:
        schar *y;
        Cache *cache;
        double *QD;
    };
    
    class ONE_CLASS_Q: public Kernel
    {
    public:
        ONE_CLASS_Q(const svm_problem& prob, const svm_parameter& param)
        :Kernel(prob.l, prob.x, param)
        {
            cache = new Cache(prob.l,(long int)(param.cache_size*(1<<20)));
            QD = new double[prob.l];
            for(int i=0;i<prob.l;i++)
                QD[i] = (this->*kernel_function)(i,i);
        }
        
        Qfloat *get_Q(int i, int len) const
        {
            Qfloat *data;
            int start, j;
            if((start = cache->get_data(i,&data,len)) < len)
            {
                for(j=start;j<len;j++)
                    data[j] = (Qfloat)(this->*kernel_function)(i,j);
            }
            return data;
        }
        
        double *get_QD() const
        {
            return QD;
        }
        
        void swap_index(int i, int j) const
        {
            cache->swap_index(i,j);
            Kernel::swap_index(i,j);
            swap(QD[i],QD[j]);
        }
        
        ~ONE_CLASS_Q()
        {
            delete cache;
            delete[] QD;
        }
    private:
        Cache *cache;
        double *QD;
    };
    
    class SVR_Q: public Kernel
    {
    public:
        SVR_Q(const svm_problem& prob, const svm_parameter& param)
        :Kernel(prob.l, prob.x, param)
        {
            l = prob.l;
            cache = new Cache(l,(long int)(param.cache_size*(1<<20)));
            QD = new double[2*l];
            sign = new schar[2*l];
            index = new int[2*l];
            for(int k=0;k<l;k++)
            {
                sign[k] = 1;
                sign[k+l] = -1;
                index[k] = k;
                index[k+l] = k;
                QD[k] = (this->*kernel_function)(k,k);
                QD[k+l] = QD[k];
            }
            buffer[0] = new Qfloat[2*l];
            buffer[1] = new Qfloat[2*l];
            next_buffer = 0;
        }
        
        void swap_index(int i, int j) const
        {
            swap(sign[i],sign[j]);
            swap(index[i],index[j]);
            swap(QD[i],QD[j]);
        }
        
        Qfloat *get_Q(int i, int len) const
        {
            Qfloat *data;
            int j, real_i = index[i];
            if(cache->get_data(real_i,&data,l) < l)
            {
                for(j=0;j<l;j++)
                    data[j] = (Qfloat)(this->*kernel_function)(real_i,j);
            }
            
            // reorder and copy
            Qfloat *buf = buffer[next_buffer];
            next_buffer = 1 - next_buffer;
            schar si = sign[i];
            for(j=0;j<len;j++)
                buf[j] = (Qfloat) si * (Qfloat) sign[j] * data[index[j]];
            return buf;
        }
        
        double *get_QD() const
        {
            return QD;
        }
        
        ~SVR_Q()
        {
            delete cache;
            delete[] sign;
            delete[] index;
            delete[] buffer[0];
            delete[] buffer[1];
            delete[] QD;
        }
    private:
        int l;
        Cache *cache;
        schar *sign;
        int *index;
        mutable int next_buffer;
        Qfloat *buffer[2];
        double *QD;
    };
    
    //
    // construct and solve various formulations
    //
    static void solve_c_svc(
                            const svm_problem *prob, const svm_parameter* param,
                            double *alpha, Solver::SolutionInfo* si, double Cp, double Cn)
    {
        int l = prob->l;
        double *minus_ones = new double[l];
        schar *y = new schar[l];
        
        int i;
        
        for(i=0;i<l;i++)
        {
            alpha[i] = 0;
            minus_ones[i] = -1;
            if(prob->y[i] > 0) y[i] = +1; else y[i] = -1;
        }
        
        Solver s;
        s.Solve(l, SVC_Q(*prob,*param,y), minus_ones, y,
                alpha, Cp, Cn, param->eps, si, param->shrinking);
        
        double sum_alpha=0;
        for(i=0;i<l;i++)
            sum_alpha += alpha[i];
        
        if (Cp==Cn)
            info("nu = %f\n", sum_alpha/(Cp*prob->l));
        
        for(i=0;i<l;i++)
            alpha[i] *= y[i];
        
        delete[] minus_ones;
        delete[] y;
    }
    
    static void solve_nu_svc(
                             const svm_problem *prob, const svm_parameter *param,
                             double *alpha, Solver::SolutionInfo* si)
    {
        int i;
        int l = prob->l;
        double nu = param->nu;
        
        schar *y = new schar[l];
        
        for(i=0;i<l;i++)
            if(prob->y[i]>0)
                y[i] = +1;
            else
                y[i] = -1;
        
        double sum_pos = nu*l/2;
        double sum_neg = nu*l/2;
        
        for(i=0;i<l;i++)
            if(y[i] == +1)
            {
                alpha[i] = min(1.0,sum_pos);
                sum_pos -= alpha[i];
            }
            else
            {
                alpha[i] = min(1.0,sum_neg);
                sum_neg -= alpha[i];
            }
        
        double *zeros = new double[l];
        
        for(i=0;i<l;i++)
            zeros[i] = 0;
        
        Solver_NU s;
        s.Solve(l, SVC_Q(*prob,*param,y), zeros, y,
                alpha, 1.0, 1.0, param->eps, si,  param->shrinking);
        double r = si->r;
        
        info("C = %f\n",1/r);
        
        for(i=0;i<l;i++)
            alpha[i] *= y[i]/r;
        
        si->rho /= r;
        si->obj /= (r*r);
        si->upper_bound_p = 1/r;
        si->upper_bound_n = 1/r;
        
        delete[] y;
        delete[] zeros;
    }
    
    static void solve_one_class(
                                const svm_problem *prob, const svm_parameter *param,
                                double *alpha, Solver::SolutionInfo* si)
    {
        int l = prob->l;
        double *zeros = new double[l];
        schar *ones = new schar[l];
        int i;
        
        int n = (int)(param->nu*prob->l);	// # of alpha's at upper bound
        
        for(i=0;i<n;i++)
            alpha[i] = 1;
        if(n<prob->l)
            alpha[n] = param->nu * prob->l - n;
        for(i=n+1;i<l;i++)
            alpha[i] = 0;
        
        for(i=0;i<l;i++)
        {
            zeros[i] = 0;
            ones[i] = 1;
        }
        
        Solver s;
        s.Solve(l, ONE_CLASS_Q(*prob,*param), zeros, ones,
                alpha, 1.0, 1.0, param->eps, si, param->shrinking);
        
        delete[] zeros;
        delete[] ones;
    }
    
    static void solve_epsilon_svr(
                                  const svm_problem *prob, const svm_parameter *param,
                                  double *alpha, Solver::SolutionInfo* si)
    {
        int l = prob->l;
        double *alpha2 = new double[2*l];
        double *linear_term = new double[2*l];
        schar *y = new schar[2*l];
        int i;
        
        for(i=0;i<l;i++)
        {
            alpha2[i] = 0;
            linear_term[i] = param->p - prob->y[i];
            y[i] = 1;
            
            alpha2[i+l] = 0;
            linear_term[i+l] = param->p + prob->y[i];
            y[i+l] = -1;
        }
        
        Solver s;
        s.Solve(2*l, SVR_Q(*prob,*param), linear_term, y,
                alpha2, param->C, param->C, param->eps, si, param->shrinking);
        
        double sum_alpha = 0;
        for(i=0;i<l;i++)
        {
            alpha[i] = alpha2[i] - alpha2[i+l];
            sum_alpha += fabs(alpha[i]);
        }
        info("nu = %f\n",sum_alpha/(param->C*l));
        
        delete[] alpha2;
        delete[] linear_term;
        delete[] y;
    }
    
    static void solve_nu_svr(
                             const svm_problem *prob, const svm_parameter *param,
                             double *alpha, Solver::SolutionInfo* si)
    {
        int l = prob->l;
        double C = param->C;
        double *alpha2 = new double[2*l];
        double *linear_term = new double[2*l];
        schar *y = new schar[2*l];
        int i;
        
        double sum = C * param->nu * l / 2;
        for(i=0;i<l;i++)
        {
            alpha2[i] = alpha2[i+l] = min(sum,C);
            sum -= alpha2[i];
            
            linear_term[i] = - prob->y[i];
            y[i] = 1;
            
            linear_term[i+l] = prob->y[i];
            y[i+l] = -1;
        }
        
        Solver_NU s;
        s.Solve(2*l, SVR_Q(*prob,*param), linear_term, y,
                alpha2, C, C, param->eps, si, param->shrinking);
        
        info("epsilon = %f\n",-si->r);
        
        for(i=0;i<l;i++)
            alpha[i] = alpha2[i] - alpha2[i+l];
        
        delete[] alpha2;
        delete[] linear_term;
        delete[] y;
    }
    
    //
    // decision_function
    //
    struct decision_function
    {
        double *alpha;
        double rho;
    };
    
    static decision_function svm_train_one(
                                           const svm_problem *prob, const svm_parameter *param,
                                           double Cp, double Cn)
    {
        double *alpha = Malloc(double,prob->l);
        Solver::SolutionInfo si;
        switch(param->svm_type)
        {
            case C_SVC:
                solve_c_svc(prob,param,alpha,&si,Cp,Cn);
                break;
            case NU_SVC:
                solve_nu_svc(prob,param,alpha,&si);
                break;
            case ONE_CLASS:
                solve_one_class(prob,param,alpha,&si);
                break;
            case EPSILON_SVR:
                solve_epsilon_svr(prob,param,alpha,&si);
                break;
            case NU_SVR:
                solve_nu_svr(prob,param,alpha,&si);
                break;
        }
        
        info("obj = %f, rho = %f\n",si.obj,si.rho);
        
        // output SVs
        
        int nSV = 0;
        int nBSV = 0;
        for(int i=0;i<prob->l;i++)
        {
            if(fabs(alpha[i]) > 0)
            {
                ++nSV;
                if(prob->y[i] > 0)
                {
                    if(fabs(alpha[i]) >= si.upper_bound_p)
                        ++nBSV;
                }
                else
                {
                    if(fabs(alpha[i]) >= si.upper_bound_n)
                        ++nBSV;
                }
            }
        }
        
        info("nSV = %d, nBSV = %d\n",nSV,nBSV);
        
        decision_function f;
        f.alpha = alpha;
        f.rho = si.rho;
        return f;
    }
    
    // Platt's binary SVM Probablistic Output: an improvement from Lin et al.
    static void sigmoid_train(
                              int l, const double *dec_values, const double *labels,
                              double& A, double& B)
    {
        double prior1=0, prior0 = 0;
        int i;
        
        for (i=0;i<l;i++)
            if (labels[i] > 0) prior1+=1;
            else prior0+=1;
        
        int max_iter=100;	// Maximal number of iterations
        double min_step=1e-10;	// Minimal step taken in line search
        double sigma=1e-12;	// For numerically strict PD of Hessian
        double eps=1e-5;
        double hiTarget=(prior1+1.0)/(prior1+2.0);
        double loTarget=1/(prior0+2.0);
        double *t=Malloc(double,l);
        double fApB,p,q,h11,h22,h21,g1,g2,det,dA,dB,gd,stepsize;
        double newA,newB,newf,d1,d2;
        int iter;
        
        // Initial Point and Initial Fun Value
        A=0.0; B=log((prior0+1.0)/(prior1+1.0));
        double fval = 0.0;
        
        for (i=0;i<l;i++)
        {
            if (labels[i]>0) t[i]=hiTarget;
            else t[i]=loTarget;
            fApB = dec_values[i]*A+B;
            if (fApB>=0)
                fval += t[i]*fApB + log(1+exp(-fApB));
            else
                fval += (t[i] - 1)*fApB +log(1+exp(fApB));
        }
        for (iter=0;iter<max_iter;iter++)
        {
            // Update Gradient and Hessian (use H' = H + sigma I)
            h11=sigma; // numerically ensures strict PD
            h22=sigma;
            h21=0.0;g1=0.0;g2=0.0;
            for (i=0;i<l;i++)
            {
                fApB = dec_values[i]*A+B;
                if (fApB >= 0)
                {
                    p=exp(-fApB)/(1.0+exp(-fApB));
                    q=1.0/(1.0+exp(-fApB));
                }
                else
                {
                    p=1.0/(1.0+exp(fApB));
                    q=exp(fApB)/(1.0+exp(fApB));
                }
                d2=p*q;
                h11+=dec_values[i]*dec_values[i]*d2;
                h22+=d2;
                h21+=dec_values[i]*d2;
                d1=t[i]-p;
                g1+=dec_values[i]*d1;
                g2+=d1;
            }
            
            // Stopping Criteria
            if (fabs(g1)<eps && fabs(g2)<eps)
                break;
            
            // Finding Newton direction: -inv(H') * g
            det=h11*h22-h21*h21;
            dA=-(h22*g1 - h21 * g2) / det;
            dB=-(-h21*g1+ h11 * g2) / det;
            gd=g1*dA+g2*dB;
            
            
            stepsize = 1;		// Line Search
            while (stepsize >= min_step)
            {
                newA = A + stepsize * dA;
                newB = B + stepsize * dB;
                
                // New function value
                newf = 0.0;
                for (i=0;i<l;i++)
                {
                    fApB = dec_values[i]*newA+newB;
                    if (fApB >= 0)
                        newf += t[i]*fApB + log(1+exp(-fApB));
                    else
                        newf += (t[i] - 1)*fApB +log(1+exp(fApB));
                }
                // Check sufficient decrease
                if (newf<fval+0.0001*stepsize*gd)
                {
                    A=newA;B=newB;fval=newf;
                    break;
                }
                else
                    stepsize = stepsize / 2.0;
            }
            
            if (stepsize < min_step)
            {
                info("Line search fails in two-class probability estimates\n");
                break;
            }
        }
        
        if (iter>=max_iter)
            info("Reaching maximal iterations in two-class probability estimates\n");
        free(t);
    }
    
    static double sigmoid_predict(double decision_value, double A, double B)
    {
        double fApB = decision_value*A+B;
        // 1-p used later; avoid catastrophic cancellation
        if (fApB >= 0)
            return exp(-fApB)/(1.0+exp(-fApB));
        else
            return 1.0/(1+exp(fApB)) ;
    }
    
    // Method 2 from the multiclass_prob paper by Wu, Lin, and Weng
    static void multiclass_probability(int k, double **r, double *p)
    {
        int t,j;
        int iter = 0, max_iter=max(100,k);
        double **Q=Malloc(double *,k);
        double *Qp=Malloc(double,k);
        double pQp, eps=0.005/k;
        
        for (t=0;t<k;t++)
        {
            p[t]=1.0/k;  // Valid if k = 1
            Q[t]=Malloc(double,k);
            Q[t][t]=0;
            for (j=0;j<t;j++)
            {
                Q[t][t]+=r[j][t]*r[j][t];
                Q[t][j]=Q[j][t];
            }
            for (j=t+1;j<k;j++)
            {
                Q[t][t]+=r[j][t]*r[j][t];
                Q[t][j]=-r[j][t]*r[t][j];
            }
        }
        for (iter=0;iter<max_iter;iter++)
        {
            // stopping condition, recalculate QP,pQP for numerical accuracy
            pQp=0;
            for (t=0;t<k;t++)
            {
                Qp[t]=0;
                for (j=0;j<k;j++)
                    Qp[t]+=Q[t][j]*p[j];
                pQp+=p[t]*Qp[t];
            }
            double max_error=0;
            for (t=0;t<k;t++)
            {
                double error=fabs(Qp[t]-pQp);
                if (error>max_error)
                    max_error=error;
            }
            if (max_error<eps) break;
            
            for (t=0;t<k;t++)
            {
                double diff=(-Qp[t]+pQp)/Q[t][t];
                p[t]+=diff;
                pQp=(pQp+diff*(diff*Q[t][t]+2*Qp[t]))/(1+diff)/(1+diff);
                for (j=0;j<k;j++)
                {
                    Qp[j]=(Qp[j]+diff*Q[t][j])/(1+diff);
                    p[j]/=(1+diff);
                }
            }
        }
        if (iter>=max_iter)
            info("Exceeds max_iter in multiclass_prob\n");
        for(t=0;t<k;t++) free(Q[t]);
        free(Q);
        free(Qp);
    }
    
    // Cross-validation decision values for probability estimates
    static void svm_binary_svc_probability(
                                           const svm_problem *prob, const svm_parameter *param,
                                           double Cp, double Cn, double& probA, double& probB)
    {
        int i;
        int nr_fold = 5;
        int *perm = Malloc(int,prob->l);
        double *dec_values = Malloc(double,prob->l);
        
        // random shuffle
        for(i=0;i<prob->l;i++) perm[i]=i;
        for(i=0;i<prob->l;i++)
        {
            int j = i+rand()%(prob->l-i);
            swap(perm[i],perm[j]);
        }
        for(i=0;i<nr_fold;i++)
        {
            int begin = i*prob->l/nr_fold;
            int end = (i+1)*prob->l/nr_fold;
            int j,k;
            struct svm_problem subprob;
            
            subprob.l = prob->l-(end-begin);
            subprob.x = Malloc(struct svm_node*,subprob.l);
            subprob.y = Malloc(double,subprob.l);
            
            k=0;
            for(j=0;j<begin;j++)
            {
                subprob.x[k] = prob->x[perm[j]];
                subprob.y[k] = prob->y[perm[j]];
                ++k;
            }
            for(j=end;j<prob->l;j++)
            {
                subprob.x[k] = prob->x[perm[j]];
                subprob.y[k] = prob->y[perm[j]];
                ++k;
            }
            int p_count=0,n_count=0;
            for(j=0;j<k;j++)
                if(subprob.y[j]>0)
                    p_count++;
                else
                    n_count++;
            
            if(p_count==0 && n_count==0)
                for(j=begin;j<end;j++)
                    dec_values[perm[j]] = 0;
            else if(p_count > 0 && n_count == 0)
                for(j=begin;j<end;j++)
                    dec_values[perm[j]] = 1;
            else if(p_count == 0 && n_count > 0)
                for(j=begin;j<end;j++)
                    dec_values[perm[j]] = -1;
            else
            {
                svm_parameter subparam = *param;
                subparam.probability=0;
                subparam.C=1.0;
                subparam.nr_weight=2;
                subparam.weight_label = Malloc(int,2);
                subparam.weight = Malloc(double,2);
                subparam.weight_label[0]=+1;
                subparam.weight_label[1]=-1;
                subparam.weight[0]=Cp;
                subparam.weight[1]=Cn;
                struct svm_model *submodel = svm_train(&subprob,&subparam);
                for(j=begin;j<end;j++)
                {
                    svm_predict_values(submodel,prob->x[perm[j]],&(dec_values[perm[j]]));
                    // ensure +1 -1 order; reason not using CV subroutine
                    dec_values[perm[j]] *= submodel->label[0];
                }
                svm_free_and_destroy_model(&submodel);
                svm_destroy_param(&subparam);
            }
            free(subprob.x);
            free(subprob.y);
        }
        sigmoid_train(prob->l,dec_values,prob->y,probA,probB);
        free(dec_values);
        free(perm);
    }
    
    // Return parameter of a Laplace distribution
    static double svm_svr_probability(
                                      const svm_problem *prob, const svm_parameter *param)
    {
        int i;
        int nr_fold = 5;
        double *ymv = Malloc(double,prob->l);
        double mae = 0;
        
        svm_parameter newparam = *param;
        newparam.probability = 0;
        svm_cross_validation(prob,&newparam,nr_fold,ymv);
        for(i=0;i<prob->l;i++)
        {
            ymv[i]=prob->y[i]-ymv[i];
            mae += fabs(ymv[i]);
        }
        mae /= prob->l;
        double std=sqrt(2*mae*mae);
        int count=0;
        mae=0;
        for(i=0;i<prob->l;i++)
            if (fabs(ymv[i]) > 5*std)
                count=count+1;
            else
                mae+=fabs(ymv[i]);
        mae /= (prob->l-count);
        info("Prob. model for test data: target value = predicted value + z,\nz: Laplace distribution e^(-|z|/sigma)/(2sigma),sigma= %g\n",mae);
        free(ymv);
        return mae;
    }
    
    
    // label: label name, start: begin of each class, count: #data of classes, perm: indices to the original data
    // perm, length l, must be allocated before calling this subroutine
    static void svm_group_classes(const svm_problem *prob, int *nr_class_ret, int **label_ret, int **start_ret, int **count_ret, int *perm)
    {
        int l = prob->l;
        int max_nr_class = 16;
        int nr_class = 0;
        int *label = Malloc(int,max_nr_class);
        int *count = Malloc(int,max_nr_class);
        int *data_label = Malloc(int,l);
        int i;
        
        for(i=0;i<l;i++)
        {
            int this_label = (int)prob->y[i];
            int j;
            for(j=0;j<nr_class;j++)
            {
                if(this_label == label[j])
                {
                    ++count[j];
                    break;
                }
            }
            data_label[i] = j;
            if(j == nr_class)
            {
                if(nr_class == max_nr_class)
                {
                    max_nr_class *= 2;
                    label = (int *)realloc(label,max_nr_class*sizeof(int));
                    count = (int *)realloc(count,max_nr_class*sizeof(int));
                }
                label[nr_class] = this_label;
                count[nr_class] = 1;
                ++nr_class;
            }
        }
        
        //
        // Labels are ordered by their first occurrence in the training set.
        // However, for two-class sets with -1/+1 labels and -1 appears first,
        // we swap labels to ensure that internally the binary SVM has positive data corresponding to the +1 instances.
        //
        if (nr_class == 2 && label[0] == -1 && label[1] == 1)
        {
            swap(label[0],label[1]);
            swap(count[0],count[1]);
            for(i=0;i<l;i++)
            {
                if(data_label[i] == 0)
                    data_label[i] = 1;
                else
                    data_label[i] = 0;
            }
        }
        
        int *start = Malloc(int,nr_class);
        start[0] = 0;
        for(i=1;i<nr_class;i++)
            start[i] = start[i-1]+count[i-1];
        for(i=0;i<l;i++)
        {
            perm[start[data_label[i]]] = i;
            ++start[data_label[i]];
        }
        start[0] = 0;
        for(i=1;i<nr_class;i++)
            start[i] = start[i-1]+count[i-1];
        
        *nr_class_ret = nr_class;
        *label_ret = label;
        *start_ret = start;
        *count_ret = count;
        free(data_label);
    }
    
    //
    // Interface functions
    //
    svm_model *svm_train(const svm_problem *prob, const svm_parameter *param)
    {
        svm_model *model = Malloc(svm_model,1);
        model->param = *param;
        model->free_sv = 0;	// XXX
        
        if(param->svm_type == ONE_CLASS ||
           param->svm_type == EPSILON_SVR ||
           param->svm_type == NU_SVR)
        {
            // regression or one-class-svm
            model->nr_class = 2;
            model->label = NULL;
            model->nSV = NULL;
            model->probA = NULL; model->probB = NULL;
            model->sv_coef = Malloc(double *,1);
            
            if(param->probability &&
               (param->svm_type == EPSILON_SVR ||
                param->svm_type == NU_SVR))
            {
                model->probA = Malloc(double,1);
                model->probA[0] = svm_svr_probability(prob,param);
            }
            
            decision_function f = svm_train_one(prob,param,0,0);
            model->rho = Malloc(double,1);
            model->rho[0] = f.rho;
            
            int nSV = 0;
            int i;
            for(i=0;i<prob->l;i++)
                if(fabs(f.alpha[i]) > 0) ++nSV;
            model->l = nSV;
            model->SV = Malloc(svm_node *,nSV);
            model->sv_coef[0] = Malloc(double,nSV);
            model->sv_indices = Malloc(int,nSV);
            int j = 0;
            for(i=0;i<prob->l;i++)
                if(fabs(f.alpha[i]) > 0)
                {
                    model->SV[j] = prob->x[i];
                    model->sv_coef[0][j] = f.alpha[i];
                    model->sv_indices[j] = i+1;
                    ++j;
                }
            
            free(f.alpha);
        }
        else
        {
            // classification
            int l = prob->l;
            int nr_class;
            int *label = NULL;
            int *start = NULL;
            int *count = NULL;
            int *perm = Malloc(int,l);
            
            // group training data of the same class
            svm_group_classes(prob,&nr_class,&label,&start,&count,perm);
            if(nr_class == 1)
                info("WARNING: training data in only one class. See README for details.\n");
            
            svm_node **x = Malloc(svm_node *,l);
            int i;
            for(i=0;i<l;i++)
                x[i] = prob->x[perm[i]];
            
            // calculate weighted C
            
            double *weighted_C = Malloc(double, nr_class);
            for(i=0;i<nr_class;i++)
                weighted_C[i] = param->C;
            for(i=0;i<param->nr_weight;i++)
            {
                int j;
                for(j=0;j<nr_class;j++)
                    if(param->weight_label[i] == label[j])
                        break;
                if(j == nr_class)
                    fprintf(stderr,"WARNING: class label %d specified in weight is not found\n", param->weight_label[i]);
                else
                    weighted_C[j] *= param->weight[i];
            }
            
            // train k*(k-1)/2 models
            
            bool *nonzero = Malloc(bool,l);
            for(i=0;i<l;i++)
                nonzero[i] = false;
            decision_function *f = Malloc(decision_function,nr_class*(nr_class-1)/2);
            
            double *probA=NULL,*probB=NULL;
            if (param->probability)
            {
                probA=Malloc(double,nr_class*(nr_class-1)/2);
                probB=Malloc(double,nr_class*(nr_class-1)/2);
            }
            
            int p = 0;
            for(i=0;i<nr_class;i++)
                for(int j=i+1;j<nr_class;j++)
                {
                    svm_problem sub_prob;
                    int si = start[i], sj = start[j];
                    int ci = count[i], cj = count[j];
                    sub_prob.l = ci+cj;
                    sub_prob.x = Malloc(svm_node *,sub_prob.l);
                    sub_prob.y = Malloc(double,sub_prob.l);
                    int k;
                    for(k=0;k<ci;k++)
                    {
                        sub_prob.x[k] = x[si+k];
                        sub_prob.y[k] = +1;
                    }
                    for(k=0;k<cj;k++)
                    {
                        sub_prob.x[ci+k] = x[sj+k];
                        sub_prob.y[ci+k] = -1;
                    }
                    
                    if(param->probability)
                        svm_binary_svc_probability(&sub_prob,param,weighted_C[i],weighted_C[j],probA[p],probB[p]);
                    
                    f[p] = svm_train_one(&sub_prob,param,weighted_C[i],weighted_C[j]);
                    for(k=0;k<ci;k++)
                        if(!nonzero[si+k] && fabs(f[p].alpha[k]) > 0)
                            nonzero[si+k] = true;
                    for(k=0;k<cj;k++)
                        if(!nonzero[sj+k] && fabs(f[p].alpha[ci+k]) > 0)
                            nonzero[sj+k] = true;
                    free(sub_prob.x);
                    free(sub_prob.y);
                    ++p;
                }
            
            // build output
            
            model->nr_class = nr_class;
            
            model->label = Malloc(int,nr_class);
            for(i=0;i<nr_class;i++)
                model->label[i] = label[i];
            
            model->rho = Malloc(double,nr_class*(nr_class-1)/2);
            for(i=0;i<nr_class*(nr_class-1)/2;i++)
                model->rho[i] = f[i].rho;
            
            if(param->probability)
            {
                model->probA = Malloc(double,nr_class*(nr_class-1)/2);
                model->probB = Malloc(double,nr_class*(nr_class-1)/2);
                for(i=0;i<nr_class*(nr_class-1)/2;i++)
                {
                    model->probA[i] = probA[i];
                    model->probB[i] = probB[i];
                }
            }
            else
            {
                model->probA=NULL;
                model->probB=NULL;
            }
            
            int total_sv = 0;
            int *nz_count = Malloc(int,nr_class);
            model->nSV = Malloc(int,nr_class);
            for(i=0;i<nr_class;i++)
            {
                int nSV = 0;
                for(int j=0;j<count[i];j++)
                    if(nonzero[start[i]+j])
                    {	
                        ++nSV;
                        ++total_sv;
                    }
                model->nSV[i] = nSV;
                nz_count[i] = nSV;
            }
            
            info("Total nSV = %d\n",total_sv);
            
            model->l = total_sv;
            model->SV = Malloc(svm_node *,total_sv);
            model->sv_indices = Malloc(int,total_sv);
            p = 0;
            for(i=0;i<l;i++)
                if(nonzero[i])
                {
                    model->SV[p] = x[i];
                    model->sv_indices[p++] = perm[i] + 1;
                }
            
            int *nz_start = Malloc(int,nr_class);
            nz_start[0] = 0;
            for(i=1;i<nr_class;i++)
                nz_start[i] = nz_start[i-1]+nz_count[i-1];
            
            model->sv_coef = Malloc(double *,nr_class-1);
            for(i=0;i<nr_class-1;i++)
                model->sv_coef[i] = Malloc(double,total_sv);
            
            p = 0;
            for(i=0;i<nr_class;i++)
                for(int j=i+1;j<nr_class;j++)
                {
                    // classifier (i,j): coefficients with
                    // i are in sv_coef[j-1][nz_start[i]...],
                    // j are in sv_coef[i][nz_start[j]...]
                    
                    int si = start[i];
                    int sj = start[j];
                    int ci = count[i];
                    int cj = count[j];
                    
                    int q = nz_start[i];
                    int k;
                    for(k=0;k<ci;k++)
                        if(nonzero[si+k])
                            model->sv_coef[j-1][q++] = f[p].alpha[k];
                    q = nz_start[j];
                    for(k=0;k<cj;k++)
                        if(nonzero[sj+k])
                            model->sv_coef[i][q++] = f[p].alpha[ci+k];
                    ++p;
                }
            
            free(label);
            free(probA);
            free(probB);
            free(count);
            free(perm);
            free(start);
            free(x);
            free(weighted_C);
            free(nonzero);
            for(i=0;i<nr_class*(nr_class-1)/2;i++)
                free(f[i].alpha);
            free(f);
            free(nz_count);
            free(nz_start);
        }
        return model;
    }
    
    // Stratified cross validation
    void svm_cross_validation(const svm_problem *prob, const svm_parameter *param, int nr_fold, double *target)
    {
        int i;
        int *fold_start;
        int l = prob->l;
        int *perm = Malloc(int,l);
        int nr_class;
        if (nr_fold > l)
        {
            nr_fold = l;
            fprintf(stderr,"WARNING: # folds > # data. Will use # folds = # data instead (i.e., leave-one-out cross validation)\n");
        }
        fold_start = Malloc(int,nr_fold+1);
        // stratified cv may not give leave-one-out rate
        // Each class to l folds -> some folds may have zero elements
        if((param->svm_type == C_SVC ||
            param->svm_type == NU_SVC) && nr_fold < l)
        {
            int *start = NULL;
            int *label = NULL;
            int *count = NULL;
            svm_group_classes(prob,&nr_class,&label,&start,&count,perm);
            
            // random shuffle and then data grouped by fold using the array perm
            int *fold_count = Malloc(int,nr_fold);
            int c;
            int *index = Malloc(int,l);
            for(i=0;i<l;i++)
                index[i]=perm[i];
            for (c=0; c<nr_class; c++) 
                for(i=0;i<count[c];i++)
                {
                    int j = i+rand()%(count[c]-i);
                    swap(index[start[c]+j],index[start[c]+i]);
                }
            for(i=0;i<nr_fold;i++)
            {
                fold_count[i] = 0;
                for (c=0; c<nr_class;c++)
                    fold_count[i]+=(i+1)*count[c]/nr_fold-i*count[c]/nr_fold;
            }
            fold_start[0]=0;
            for (i=1;i<=nr_fold;i++)
                fold_start[i] = fold_start[i-1]+fold_count[i-1];
            for (c=0; c<nr_class;c++)
                for(i=0;i<nr_fold;i++)
                {
                    int begin = start[c]+i*count[c]/nr_fold;
                    int end = start[c]+(i+1)*count[c]/nr_fold;
                    for(int j=begin;j<end;j++)
                    {
                        perm[fold_start[i]] = index[j];
                        fold_start[i]++;
                    }
                }
            fold_start[0]=0;
            for (i=1;i<=nr_fold;i++)
                fold_start[i] = fold_start[i-1]+fold_count[i-1];
            free(start);
            free(label);
            free(count);
            free(index);
            free(fold_count);
        }
        else
        {
            for(i=0;i<l;i++) perm[i]=i;
            for(i=0;i<l;i++)
            {
                int j = i+rand()%(l-i);
                swap(perm[i],perm[j]);
            }
            for(i=0;i<=nr_fold;i++)
                fold_start[i]=i*l/nr_fold;
        }
        
        for(i=0;i<nr_fold;i++)
        {
            int begin = fold_start[i];
            int end = fold_start[i+1];
            int j,k;
            struct svm_problem subprob;
            
            subprob.l = l-(end-begin);
            subprob.x = Malloc(struct svm_node*,subprob.l);
            subprob.y = Malloc(double,subprob.l);
            
            k=0;
            for(j=0;j<begin;j++)
            {
                subprob.x[k] = prob->x[perm[j]];
                subprob.y[k] = prob->y[perm[j]];
                ++k;
            }
            for(j=end;j<l;j++)
            {
                subprob.x[k] = prob->x[perm[j]];
                subprob.y[k] = prob->y[perm[j]];
                ++k;
            }
            struct svm_model *submodel = svm_train(&subprob,param);
            if(param->probability && 
               (param->svm_type == C_SVC || param->svm_type == NU_SVC))
            {
                double *prob_estimates=Malloc(double,svm_get_nr_class(submodel));
                for(j=begin;j<end;j++)
                    target[perm[j]] = svm_predict_probability(submodel,prob->x[perm[j]],prob_estimates);
                free(prob_estimates);
            }
            else
                for(j=begin;j<end;j++)
                    target[perm[j]] = svm_predict(submodel,prob->x[perm[j]]);
            svm_free_and_destroy_model(&submodel);
            free(subprob.x);
            free(subprob.y);
        }		
        free(fold_start);
        free(perm);
    }
    
    
    int svm_get_svm_type(const svm_model *model)
    {
        return model->param.svm_type;
    }
    
    int svm_get_nr_class(const svm_model *model)
    {
        return model->nr_class;
    }
    
    void svm_get_labels(const svm_model *model, int* label)
    {
        if (model->label != NULL)
            for(int i=0;i<model->nr_class;i++)
                label[i] = model->label[i];
    }
    
    void svm_get_sv_indices(const svm_model *model, int* indices)
    {
        if (model->sv_indices != NULL)
            for(int i=0;i<model->l;i++)
                indices[i] = model->sv_indices[i];
    }
    
    int svm_get_nr_sv(const svm_model *model)
    {
        return model->l;
    }
    
    double svm_get_svr_probability(const svm_model *model)
    {
        if ((model->param.svm_type == EPSILON_SVR || model->param.svm_type == NU_SVR) &&
            model->probA!=NULL)
            return model->probA[0];
        else
        {
            fprintf(stderr,"Model doesn't contain information for SVR probability inference\n");
            return 0;
        }
    }
    
    double svm_predict_values(const svm_model *model, const svm_node *x, double* dec_values)
    {
        int i;
        if(model->param.svm_type == ONE_CLASS ||
           model->param.svm_type == EPSILON_SVR ||
           model->param.svm_type == NU_SVR)
        {
            double *sv_coef = model->sv_coef[0];
            double sum = 0;
            for(i=0;i<model->l;i++)
                sum += sv_coef[i] * Kernel::k_function(x,model->SV[i],model->param);
            sum -= model->rho[0];
            *dec_values = sum;
            
            if(model->param.svm_type == ONE_CLASS)
                return (sum>0)?1:-1;
            else
                return sum;
        }
        else
        {
            int nr_class = model->nr_class;
            int l = model->l;
            
            double *kvalue = Malloc(double,l);
            for(i=0;i<l;i++)
                kvalue[i] = Kernel::k_function(x,model->SV[i],model->param);
            
            int *start = Malloc(int,nr_class);
            start[0] = 0;
            for(i=1;i<nr_class;i++)
                start[i] = start[i-1]+model->nSV[i-1];
            
            int *vote = Malloc(int,nr_class);
            for(i=0;i<nr_class;i++)
                vote[i] = 0;
            
            int p=0;
            for(i=0;i<nr_class;i++)
                for(int j=i+1;j<nr_class;j++)
                {
                    double sum = 0;
                    int si = start[i];
                    int sj = start[j];
                    int ci = model->nSV[i];
                    int cj = model->nSV[j];
                    
                    int k;
                    double *coef1 = model->sv_coef[j-1];
                    double *coef2 = model->sv_coef[i];
                    for(k=0;k<ci;k++)
                        sum += coef1[si+k] * kvalue[si+k];
                    for(k=0;k<cj;k++)
                        sum += coef2[sj+k] * kvalue[sj+k];
                    sum -= model->rho[p];
                    dec_values[p] = sum;
                    
                    if(dec_values[p] > 0)
                        ++vote[i];
                    else
                        ++vote[j];
                    p++;
                }
            
            int vote_max_idx = 0;
            for(i=1;i<nr_class;i++)
                if(vote[i] > vote[vote_max_idx])
                    vote_max_idx = i;
            
            free(kvalue);
            free(start);
            free(vote);
            return model->label[vote_max_idx];
        }
    }
    
    double svm_predict(const svm_model *model, const svm_node *x)
    {
        int nr_class = model->nr_class;
        double *dec_values;
        if(model->param.svm_type == ONE_CLASS ||
           model->param.svm_type == EPSILON_SVR ||
           model->param.svm_type == NU_SVR)
            dec_values = Malloc(double, 1);
        else 
            dec_values = Malloc(double, nr_class*(nr_class-1)/2);
        double pred_result = svm_predict_values(model, x, dec_values);
        free(dec_values);
        return pred_result;
    }
    
    double svm_predict_probability(
                                   const svm_model *model, const svm_node *x, double *prob_estimates)
    {
        if ((model->param.svm_type == C_SVC || model->param.svm_type == NU_SVC) &&
            model->probA!=NULL && model->probB!=NULL)
        {
            int i;
            int nr_class = model->nr_class;
            double *dec_values = Malloc(double, nr_class*(nr_class-1)/2);
            svm_predict_values(model, x, dec_values);
            
            double min_prob=1e-7;
            double **pairwise_prob=Malloc(double *,nr_class);
            for(i=0;i<nr_class;i++)
                pairwise_prob[i]=Malloc(double,nr_class);
            int k=0;
            for(i=0;i<nr_class;i++)
                for(int j=i+1;j<nr_class;j++)
                {
                    pairwise_prob[i][j]=min(max(sigmoid_predict(dec_values[k],model->probA[k],model->probB[k]),min_prob),1-min_prob);
                    pairwise_prob[j][i]=1-pairwise_prob[i][j];
                    k++;
                }
            if (nr_class == 2)
            {
                prob_estimates[0] = pairwise_prob[0][1];
                prob_estimates[1] = pairwise_prob[1][0];
            }
            else
                multiclass_probability(nr_class,pairwise_prob,prob_estimates);
            
            int prob_max_idx = 0;
            for(i=1;i<nr_class;i++)
                if(prob_estimates[i] > prob_estimates[prob_max_idx])
                    prob_max_idx = i;
            for(i=0;i<nr_class;i++)
                free(pairwise_prob[i]);
            free(dec_values);
            free(pairwise_prob);
            return model->label[prob_max_idx];
        }
        else 
            return svm_predict(model, x);
    }
    
    static const char *svm_type_table[] =
    {
        "c_svc","nu_svc","one_class","epsilon_svr","nu_svr",NULL
    };
    
    static const char *kernel_type_table[]=
    {
        "linear","polynomial","rbf","sigmoid","precomputed",NULL
    };
    
    int svm_save_model(const char *model_file_name, const svm_model *model)
    {
        FILE *fp = fopen(model_file_name,"w");
        if(fp==NULL) return -1;
        
        char *old_locale = setlocale(LC_ALL, NULL);
        if (old_locale) {
            old_locale = strdup(old_locale);
        }
        setlocale(LC_ALL, "C");
        
        const svm_parameter& param = model->param;
        
        fprintf(fp,"svm_type %s\n", svm_type_table[param.svm_type]);
        fprintf(fp,"kernel_type %s\n", kernel_type_table[param.kernel_type]);
        
        if(param.kernel_type == POLY)
            fprintf(fp,"degree %d\n", param.degree);
        
        if(param.kernel_type == POLY || param.kernel_type == RBF || param.kernel_type == SIGMOID)
            fprintf(fp,"gamma %g\n", param.gamma);
        
        if(param.kernel_type == POLY || param.kernel_type == SIGMOID)
            fprintf(fp,"coef0 %g\n", param.coef0);
        
        int nr_class = model->nr_class;
        int l = model->l;
        fprintf(fp, "nr_class %d\n", nr_class);
        fprintf(fp, "total_sv %d\n",l);
        
        {
            fprintf(fp, "rho");
            for(int i=0;i<nr_class*(nr_class-1)/2;i++)
                fprintf(fp," %g",model->rho[i]);
            fprintf(fp, "\n");
        }
        
        if(model->label)
        {
            fprintf(fp, "label");
            for(int i=0;i<nr_class;i++)
                fprintf(fp," %d",model->label[i]);
            fprintf(fp, "\n");
        }
        
        if(model->probA) // regression has probA only
        {
            fprintf(fp, "probA");
            for(int i=0;i<nr_class*(nr_class-1)/2;i++)
                fprintf(fp," %g",model->probA[i]);
            fprintf(fp, "\n");
        }
        if(model->probB)
        {
            fprintf(fp, "probB");
            for(int i=0;i<nr_class*(nr_class-1)/2;i++)
                fprintf(fp," %g",model->probB[i]);
            fprintf(fp, "\n");
        }
        
        if(model->nSV)
        {
            fprintf(fp, "nr_sv");
            for(int i=0;i<nr_class;i++)
                fprintf(fp," %d",model->nSV[i]);
            fprintf(fp, "\n");
        }
        
        fprintf(fp, "SV\n");
        const double * const *sv_coef = model->sv_coef;
        const svm_node * const *SV = model->SV;
        
        for(int i=0;i<l;i++)
        {
            for(int j=0;j<nr_class-1;j++)
                fprintf(fp, "%.16g ",sv_coef[j][i]);
            
            const svm_node *p = SV[i];
            
            if(param.kernel_type == PRECOMPUTED)
                fprintf(fp,"0:%d ",(int)(p->value));
            else
                while(p->index != -1)
                {
                    fprintf(fp,"%d:%.8g ",p->index,p->value);
                    p++;
                }
            fprintf(fp, "\n");
        }
        
        setlocale(LC_ALL, old_locale);
        free(old_locale);
        
        if (ferror(fp) != 0 || fclose(fp) != 0) return -1;
        else return 0;
    }
    
    static char *line = NULL;
    static int max_line_len;
    
    static char* readline(FILE *input)
    {
        int len;
        
        if(fgets(line,max_line_len,input) == NULL)
            return NULL;
        
        while(strrchr(line,'\n') == NULL)
        {
            max_line_len *= 2;
            line = (char *) realloc(line,max_line_len);
            len = (int) strlen(line);
            if(fgets(line+len,max_line_len-len,input) == NULL)
                break;
        }
        return line;
    }
    
    //
    // FSCANF helps to handle fscanf failures.
    // Its do-while block avoids the ambiguity when
    // if (...)
    //    FSCANF();
    // is used
    //
#define FSCANF(_stream, _format, _var) do{ if (fscanf(_stream, _format, _var) != 1) return false; }while(0)
    bool read_model_header(FILE *fp, svm_model* model)
    {
        svm_parameter& param = model->param;
        // parameters for training only won't be assigned, but arrays are assigned as NULL for safety
        param.nr_weight = 0;
        param.weight_label = NULL;
        param.weight = NULL;
        
        char cmd[81];
        while(1)
        {
            FSCANF(fp,"%80s",cmd);
            
            if(strcmp(cmd,"svm_type")==0)
            {
                FSCANF(fp,"%80s",cmd);
                int i;
                for(i=0;svm_type_table[i];i++)
                {
                    if(strcmp(svm_type_table[i],cmd)==0)
                    {
                        param.svm_type=i;
                        break;
                    }
                }
                if(svm_type_table[i] == NULL)
                {
                    fprintf(stderr,"unknown svm type.\n");
                    return false;
                }
            }
            else if(strcmp(cmd,"kernel_type")==0)
            {		
                FSCANF(fp,"%80s",cmd);
                int i;
                for(i=0;kernel_type_table[i];i++)
                {
                    if(strcmp(kernel_type_table[i],cmd)==0)
                    {
                        param.kernel_type=i;
                        break;
                    }
                }
                if(kernel_type_table[i] == NULL)
                {
                    fprintf(stderr,"unknown kernel function.\n");	
                    return false;
                }
            }
            else if(strcmp(cmd,"degree")==0)
                FSCANF(fp,"%d",&param.degree);
            else if(strcmp(cmd,"gamma")==0)
                FSCANF(fp,"%lf",&param.gamma);
            else if(strcmp(cmd,"coef0")==0)
                FSCANF(fp,"%lf",&param.coef0);
            else if(strcmp(cmd,"nr_class")==0)
                FSCANF(fp,"%d",&model->nr_class);
            else if(strcmp(cmd,"total_sv")==0)
                FSCANF(fp,"%d",&model->l);
            else if(strcmp(cmd,"rho")==0)
            {
                int n = model->nr_class * (model->nr_class-1)/2;
                model->rho = Malloc(double,n);
                for(int i=0;i<n;i++)
                    FSCANF(fp,"%lf",&model->rho[i]);
            }
            else if(strcmp(cmd,"label")==0)
            {
                int n = model->nr_class;
                model->label = Malloc(int,n);
                for(int i=0;i<n;i++)
                    FSCANF(fp,"%d",&model->label[i]);
            }
            else if(strcmp(cmd,"probA")==0)
            {
                int n = model->nr_class * (model->nr_class-1)/2;
                model->probA = Malloc(double,n);
                for(int i=0;i<n;i++)
                    FSCANF(fp,"%lf",&model->probA[i]);
            }
            else if(strcmp(cmd,"probB")==0)
            {
                int n = model->nr_class * (model->nr_class-1)/2;
                model->probB = Malloc(double,n);
                for(int i=0;i<n;i++)
                    FSCANF(fp,"%lf",&model->probB[i]);
            }
            else if(strcmp(cmd,"nr_sv")==0)
            {
                int n = model->nr_class;
                model->nSV = Malloc(int,n);
                for(int i=0;i<n;i++)
                    FSCANF(fp,"%d",&model->nSV[i]);
            }
            else if(strcmp(cmd,"SV")==0)
            {
                while(1)
                {
                    int c = getc(fp);
                    if(c==EOF || c=='\n') break;
                }
                break;
            }
            else
            {
                fprintf(stderr,"unknown text in model file: [%s]\n",cmd);
                return false;
            }
        }
        
        return true;
        
    }
    
    svm_model *svm_load_model(const char *model_file_name)
    {
        FILE *fp = fopen(model_file_name,"rb");
        if(fp==NULL) return NULL;
        
        char *old_locale = setlocale(LC_ALL, NULL);
        if (old_locale) {
            old_locale = strdup(old_locale);
        }
        setlocale(LC_ALL, "C");
        
        // read parameters
        
        svm_model *model = Malloc(svm_model,1);
        model->rho = NULL;
        model->probA = NULL;
        model->probB = NULL;
        model->sv_indices = NULL;
        model->label = NULL;
        model->nSV = NULL;
        
        // read header
        if (!read_model_header(fp, model))
        {
            fprintf(stderr, "ERROR: fscanf failed to read model\n");
            setlocale(LC_ALL, old_locale);
            free(old_locale);
            free(model->rho);
            free(model->label);
            free(model->nSV);
            free(model);
            return NULL;
        }
        
        // read sv_coef and SV
        
        int elements = 0;
        long pos = ftell(fp);
        
        max_line_len = 1024;
        line = Malloc(char,max_line_len);
        char *p,*endptr,*idx,*val;
        
        while(readline(fp)!=NULL)
        {
            p = strtok(line,":");
            while(1)
            {
                p = strtok(NULL,":");
                if(p == NULL)
                    break;
                ++elements;
            }
        }
        elements += model->l;
        
        fseek(fp,pos,SEEK_SET);
        
        int m = model->nr_class - 1;
        int l = model->l;
        model->sv_coef = Malloc(double *,m);
        int i;
        for(i=0;i<m;i++)
            model->sv_coef[i] = Malloc(double,l);
        model->SV = Malloc(svm_node*,l);
        svm_node *x_space = NULL;
        if(l>0) x_space = Malloc(svm_node,elements);
        
        int j=0;
        for(i=0;i<l;i++)
        {
            readline(fp);
            model->SV[i] = &x_space[j];
            
            p = strtok(line, " \t");
            model->sv_coef[0][i] = strtod(p,&endptr);
            for(int k=1;k<m;k++)
            {
                p = strtok(NULL, " \t");
                model->sv_coef[k][i] = strtod(p,&endptr);
            }
            
            while(1)
            {
                idx = strtok(NULL, ":");
                val = strtok(NULL, " \t");
                
                if(val == NULL)
                    break;
                x_space[j].index = (int) strtol(idx,&endptr,10);
                x_space[j].value = strtod(val,&endptr);
                
                ++j;
            }
            x_space[j++].index = -1;
        }
        free(line);
        
        setlocale(LC_ALL, old_locale);
        free(old_locale);
        
        if (ferror(fp) != 0 || fclose(fp) != 0)
            return NULL;
        
        model->free_sv = 1;	// XXX
        return model;
    }
    
    void svm_free_model_content(svm_model* model_ptr)
    {
        if(model_ptr->free_sv && model_ptr->l > 0 && model_ptr->SV != NULL)
            free((void *)(model_ptr->SV[0]));
        if(model_ptr->sv_coef)
        {
            for(int i=0;i<model_ptr->nr_class-1;i++)
                free(model_ptr->sv_coef[i]);
        }
        
        free(model_ptr->SV);
        model_ptr->SV = NULL;
        
        free(model_ptr->sv_coef);
        model_ptr->sv_coef = NULL;
        
        free(model_ptr->rho);
        model_ptr->rho = NULL;
        
        free(model_ptr->label);
        model_ptr->label= NULL;
        
        free(model_ptr->probA);
        model_ptr->probA = NULL;
        
        free(model_ptr->probB);
        model_ptr->probB= NULL;
        
        free(model_ptr->sv_indices);
        model_ptr->sv_indices = NULL;
        
        free(model_ptr->nSV);
        model_ptr->nSV = NULL;
    }
    
    void svm_free_and_destroy_model(svm_model** model_ptr_ptr)
    {
        if(model_ptr_ptr != NULL && *model_ptr_ptr != NULL)
        {
            svm_free_model_content(*model_ptr_ptr);
            free(*model_ptr_ptr);
            *model_ptr_ptr = NULL;
        }
    }
    
    void svm_destroy_param(svm_parameter* param)
    {
        free(param->weight_label);
        free(param->weight);
    }
    
    const char *svm_check_parameter(const svm_problem *prob, const svm_parameter *param)
    {
        // svm_type
        
        int svm_type = param->svm_type;
        if(svm_type != C_SVC &&
           svm_type != NU_SVC &&
           svm_type != ONE_CLASS &&
           svm_type != EPSILON_SVR &&
           svm_type != NU_SVR)
            return "unknown svm type";
        
        // kernel_type, degree
        
        int kernel_type = param->kernel_type;
        if(kernel_type != LINEAR &&
           kernel_type != POLY &&
           kernel_type != RBF &&
           kernel_type != SIGMOID &&
           kernel_type != PRECOMPUTED)
            return "unknown kernel type";
        
        if(param->gamma < 0)
            return "gamma < 0";
        
        if(param->degree < 0)
            return "degree of polynomial kernel < 0";
        
        // cache_size,eps,C,nu,p,shrinking
        
        if(param->cache_size <= 0)
            return "cache_size <= 0";
        
        if(param->eps <= 0)
            return "eps <= 0";
        
        if(svm_type == C_SVC ||
           svm_type == EPSILON_SVR ||
           svm_type == NU_SVR)
            if(param->C <= 0)
                return "C <= 0";
        
        if(svm_type == NU_SVC ||
           svm_type == ONE_CLASS ||
           svm_type == NU_SVR)
            if(param->nu <= 0 || param->nu > 1)
                return "nu <= 0 or nu > 1";
        
        if(svm_type == EPSILON_SVR)
            if(param->p < 0)
                return "p < 0";
        
        if(param->shrinking != 0 &&
           param->shrinking != 1)
            return "shrinking != 0 and shrinking != 1";
        
        if(param->probability != 0 &&
           param->probability != 1)
            return "probability != 0 and probability != 1";
        
        if(param->probability == 1 &&
           svm_type == ONE_CLASS)
            return "one-class SVM probability output not supported yet";
        
        
        // check whether nu-svc is feasible
        
        if(svm_type == NU_SVC)
        {
            int l = prob->l;
            int max_nr_class = 16;
            int nr_class = 0;
            int *label = Malloc(int,max_nr_class);
            int *count = Malloc(int,max_nr_class);
            
            int i;
            for(i=0;i<l;i++)
            {
                int this_label = (int)prob->y[i];
                int j;
                for(j=0;j<nr_class;j++)
                    if(this_label == label[j])
                    {
                        ++count[j];
                        break;
                    }
                if(j == nr_class)
                {
                    if(nr_class == max_nr_class)
                    {
                        max_nr_class *= 2;
                        label = (int *)realloc(label,max_nr_class*sizeof(int));
                        count = (int *)realloc(count,max_nr_class*sizeof(int));
                    }
                    label[nr_class] = this_label;
                    count[nr_class] = 1;
                    ++nr_class;
                }
            }
            
            for(i=0;i<nr_class;i++)
            {
                int n1 = count[i];
                for(int j=i+1;j<nr_class;j++)
                {
                    int n2 = count[j];
                    if(param->nu*(n1+n2)/2 > min(n1,n2))
                    {
                        free(label);
                        free(count);
                        return "specified nu is infeasible";
                    }
                }
            }
            free(label);
            free(count);
        }
        
        return NULL;
    }
    
    int svm_check_probability_model(const svm_model *model)
    {
        return ((model->param.svm_type == C_SVC || model->param.svm_type == NU_SVC) &&
                model->probA!=NULL && model->probB!=NULL) ||
        ((model->param.svm_type == EPSILON_SVR || model->param.svm_type == NU_SVR) &&
         model->probA!=NULL);
    }
    
    void svm_set_print_string_function(void (*print_func)(const char *))
    {
        if(print_func == NULL)
            svm_print_string = &print_string_stdout;
        else
            svm_print_string = print_func;
    }
}